1-photon (382 nm) and 2-photon (752 nm) excitations to the S1 state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S1Sn due to resonant absorption of a third pump photon. Subsequent SnS1 internal conversion (with τ1 = 1 ps) prepares a very hot S1 state which cools down with τ2 = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections σ(2) = 32 ⋅ 10−50 cm4 s at 752 nm are evaluated from the bleach signal.

1.
S. A.
Kovalenko
,
A. L.
Dobryakov
,
J.
Ruthmann
, and
N. P.
Ernsting
, “
Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing
,”
Phys. Rev. A
59
,
2369
2384
(
1999
).
2.
S. A.
Kovalenko
,
R.
Schanz
,
H.
Hennig
, and
N. P.
Ernsting
, “
Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absoption spectroscopy
,”
J. Chem. Phys.
115
,
3256
3273
(
2001
).
3.
M.
Quick
,
A. L.
Dobryakov
,
M.
Gerecke
,
C.
Richter
,
F.
Berndt
,
I. N.
Ioffe
,
A. A.
Granovsky
,
R.
Mahrwald
,
N. P.
Ernsting
, and
S. A.
Kovalenko
, “
Photisomerization dynamics and pathways of trans- and cis-azobenzene in solution from broadband femtosecond spectroscopies and calculations
,”
J. Phys. Chem. B
118
,
8756
8771
(
2014
).
4.
D.
Herrmann
,
S.
Niersar
,
C.
Scharsich
,
A.
Köhler
,
M.
Stutzmann
, and
E.
Riedle
, “
Role of structural order and excess energy on ultrafast free charge generation in hybrid polytiophene/Si photovoltatics probed by near-infrared broadband transient absorption
,”
J. Am. Chem. Soc.
133
,
18220
18233
(
2011
).
5.
D.
Kosumi
,
K.
Abe
,
H.
Karasawa
,
M.
Fujiwara
,
R. J.
Cogdell
,
H.
Hashimoto
, and
M.
Yoshizawa
, “
Ultrafast relaxation kinetics of the dark S1 state in all-trans-β-carotene explored by one- and two-photon pump–probe spectroscopy
,”
Chem. Phys.
273
,
33
37
(
2010
).
6.
T.
Buckup
,
A.
Weigel
,
J.
Hauer
, and
M.
Motzkus
, “
Ultrafast multiphoton transient absorption of β-carotene
,”
Chem. Phys.
373
,
38
44
(
2010
).
7.
P. J.
Walla
,
P. A.
Linden
,
C.-P.
Hsu
,
G. D.
Scholes
, and
G. R.
Fleming
,
“Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria after two-photon excitation
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
10808
10813
(
2000
).
8.
A. L.
Houk
,
I. L.
Zheldakov
,
T. A.
Tommey
, and
C. G.
Elles
, “
Two-photon excitation of trans-stilbene: Spectroscopy and dynamics of electronically excited states above S1
,”
J. Phys. Chem. B
(to be published).
9.
R. R.
Birge
and
B. M.
Pierce
, “
A theoretical analysis of the two-photon properties of linear polienes and the visual chromophores
,”
J. Chem. Phys.
70
,
165
178
(
1979
).
10.
T.
Kogej
,
D.
Beljonne
,
F.
Meyers
,
J. W.
Perry
,
S. R.
Marder
, and
J.-L.
Brédas
, “
Mechanism for enhancement of two-photon absorption in donor-acceptor conjugated chromophores
,”
Chem. Phys. Lett.
298
,
1
6
(
1998
).
11.
M.
Rumi
,
J. E.
Ehrlich
,
A. A.
Heikal
,
J. W.
Perry
,
S.
Barlow
,
Z.
Hu
,
D.
McCord-Maughon
,
T. C.
Parker
,
H.
Röckel
,
S.
Thayumanavan
,
S. R.
Marder
,
D.
Beljonne
, and
J.-L.
Brédas
, “
Structure-property relationships for two-photon absorbing chromophores
,”
J. Am. Chem. Soc.
122
,
9500
9510
(
2000
).
12.
M.
Pawlicki
,
H. A.
Collins
,
R. G.
Denning
, and
H. L.
Anderson
, “
Two-photon absorption and the design of two-photons dyes
,”
Angew. Chem., Int. Ed.
48
,
3244
3266
(
2009
).
13.
A.
Mazunov
and
S.
Tretiak
, “
Prediction of two-photon absorption properties for organic chromophores using time-dependent density-functional theory
,”
J. Phys. Chem. B
108
,
899
907
(
2004
).
14.
C.
Xu
and
W. W.
Webb
, “
Measurement of two-photon excitation cross sections of molecular fluorophore with data from 690 to 1050 nm
,”
J. Opt. Soc. Am. B
13
,
481
491
(
1996
).
15.
N. K.
Urdabayev
,
A.
Polouukhtine
, and
V. V.
Popik
, “
Two-photon induced photocarbonylation reaction of cyclopropenones
,”
Chem. Commun.
2006
,
454
-
456
.
16.
A.
Ajami
,
W.
Husinsky
,
R.
Liska
, and
N.
Pucher
, “
Two-photon absorption cross section measurements of various two. photon initiators applying Z-scan technique
,”
J. Opt. Soc. Am. B
27
,
2290
2297
(
2010
).
17.
M.
Drobizhev
,
N. S.
Makarov
,
S. E.
Tillo
,
T. E.
Hughes
, and
A.
Rebane
, “
Two-photon absorption properties of fluorescent proteins
,”
Nat. Methods
8
,
393
399
(
2011
).
18.
M.
Drobizhev
,
N. S.
Makarov
,
A.
Rebane
,
G.
de la Torre
, and
T.
Torres
, “
Strong two-photon absorption in push-pull phtalocyanines: Role of resonance enhancement and permanent dipole moment change upon excitation
,”
J. Phys. Chem. B
112
,
848
859
(
2008
).
19.
A.
Rebane
,
N. S.
Makarov
,
M.
Drobizhev
,
B.
Spangler
,
E. S.
Tarter
,
B. D.
Reeves
,
C. W.
Spangler
,
F.
Meng
, and
Z.
Suo
, “
Quantitative prediction of two-photon absorption cross section based on linear spectroscopic properties
,”
J. Phys. Chem. C
112
,
7997
8004
(
2008
).
20.
M.
Drobizhev
,
N. S.
Makarov
,
S. E.
Tillo
,
T. E.
Hughes
, and
A.
Rebane
, “
Describing two-photon absorptivity of fluorescent proteins with a new vibronic coupling mechanism
,”
J. Phys. Chem. B
116
,
1736
1744
(
2012
).
21.
A.
Volkmer
,
V.
Subramaniam
,
D. J. S.
Birch
, and
T. M.
Jovin
, “
One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescing proteins
,”
Biophys. J.
78
,
1589
1598
(
2000
).
22.
J.
Mütze
,
V.
Iyer
,
J.
Macklin
,
J.
Colonell
,
B.
Karsch
,
Z.
Petrasek
,
P.
Schwille
,
L. L.
Looger
,
L. D.
Lavis
, and
T. D.
Harris
, “
Excitation spectra and brightness optimization of two-photon excited probes
,”
Biophys. J.
102
,
934
944
(
2012
).
23.
E.
Walker
and
P. M.
Rentzepis
, “
Two-photon technology: A new dimension
,”
Nat. Photonics
2
,
406
408
(
2008
).
24.
J. E.
Ehrlich
,
X. L.
Wu
,
I.-Y. S.
Lee
,
Z.-Y.
Hu
,
H.
Röckel
,
S. R.
Marder
, and
J. W.
Perry
, “
Two-photon absorption and broadband optical limiting with bis-donor stilbenes
,”
Opt. Lett.
22
,
1843
1845
(
1997
).
25.
A. L.
Dobryakov
,
S. A.
Kovalenko
,
A.
Weigel
,
J. L.
Perez-Lustres
,
J.
Lange
,
A.
Müller
, and
N. P.
Ernsting
,
Rev. Sci. Instrum.
81
,
113106
(
2010
).
26.
J. L.
Perez-Lustres
,
F.
Rodriguez-Prieto
,
M.
Mosquera
,
T. A.
Senyushkina
,
N. P.
Ernsting
, and
S. A.
Kovalenko
, “
Ultrafast proton transfer to solvent: Molecularity and intermediates from solvation- and diffusion-controlled regimes
,”
J. Am. Chem. Soc.
129
,
5408
-
5418
(
2007
).
27.
V.
Karunakaran
,
K.
Kleinermanns
,
R.
Improta
, and
S. A.
Kovalenko
, “
Photoinduced dynamics of guanosine monophosphate in water from broad-band transient absoption spectroscopy and quantum-chemical calculations
,”
J. Am. Chem. Soc.
131
,
5839
5850
(
2009
).
28.
S. A.
Kovalenko
,
A. L.
Dobryakov
,
I.
Ioffe
, and
N. P.
Ernsting
, “
Evidence fort the phantom state in photoinduced cis-trans isomerization of stilbene
,”
Chem. Phys. Lett.
493
,
255
258
(
2010
).
29.
F.
Berndt
,
A. L.
Dobryakov
,
M.
Quick
,
R.
Mahrwald
,
N. P.
Ernsting
,
D.
Lenoir
, and
S. A.
Kovalenko
, “
Long-lived perpendicular conformation in the photoisomerization path of 1,1′-dimethyl-stilbene and 1,1′-diethylstilbene
,”
Chem. Phys. Lett.
544
,
39
42
(
2012
).
30.
M.
Quick
,
F.
Berndt
,
A. L.
Dobryakov
,
I. N.
Ioffe
,
A. A.
Granovsky
,
C.
Knie
,
R.
Mahrwald
,
D.
Lenoir
,
N. P.
Ernsting
, and
S. A.
Kovalenko
, “
Photoisomerization dynamics of stiff-stilbene in solution
,”
J. Phys. Chem. B
118
,
1389
1402
(
2014
).
31.
M. G.
Vivas
,
D. L.
Silva
,
J.
Malinge
,
M.
Boujtita
,
R.
Zalesny
,
W.
Bartkowiak
,
H.
Å ´gren
,
S.
Canuto
,
L.
De Bani
,
E.
Ishow
, and
C. R.
Mendonca
, “
Molecular structure–optical property relationships for a series of non-centrosymmetric two-photon absorbing push-pull triarylamine molecules
,”
Sci. Rep.
4
(
4447
),
1
11
(
2014
).
32.
E.
Ishow
,
G.
Clavier
,
F.
Miomandre
,
M.
Rebarz
,
G.
Buntinx
, and
O.
Poizast
, “
Comprehensive investigation of the excited-state dynamics of push-pull triphenylamine dyes as models for photonic applications
,”
Phys. Chem. Chem. Phys.
15
,
13922
13939
(
2013
).
33.
A. A.
Granovsky
, Firefly, version 8.1, http://classic.chem.msu.su/gran/firefly/index.html.
34.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
, “
General atomic and molecular electronic structure system
,”
J. Comput. Chem.
14
,
1347
1363
(
1993
).
35.
M. J.
Frisch
 et al, gaussian09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009 (see full reference in supplementary material40).
36.
N.
Mataga
,
Molecular Interactions and Electronic Spectra
(
Marcel Dekker, Inc.
,
NY
,
1970
).
37.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
(
Springer
,
NY
,
2011
), Chap. 18.
38.
M.
Drobizhev
,
C.
Stoltzfus
,
I.
Topol
,
J.
Collins
,
G.
Wicks
,
A.
Mikhaylov
,
L.
Barnett
,
T. E.
Hughes
, and
A.
Rebane
, “
Multiphoton photochemistry of red fluorescent proteins in solution and live cells
,”
J. Phys. Chem. B
112
,
9167
9179
(
2014
).
39.
V.
Sadovnichy
,
A.
Tikhonravov
,
V.
Voevodin
, and
A.
Opanasenko
,
Contemporary High Performance Computing
(
CRC Press Boca Raton
,
2013
), Chap. “Lomonosov”: Supercomputing at Moscow State University, pp.
283
307
.
40.
See supplementary material at http://dx.doi.org/10.1063/1.4926574 for synthesis, compound characterization, additional spectra, and computed molecular orbitals.

Supplementary Material

You do not currently have access to this content.