The galvanic displacement deposition of silver on H-terminated Si (100) in the time scale of seconds is instantaneous and characterized by a cluster density of 1011-1012 cm−2. The amount of deposited Ag follows a t1/2 dependence in agreement with a Cottrell diffusion limited mechanism. At the same time, during the deposition, the cluster density reduces by a factor 5. This behavior is in contrast with the assumption of immobile clusters. We show in the present work that coalescence and aggregation occur also in the samples immersed in the diluted hydrofluoric acid (HF) solution without the presence of Ag+. Clusters agglomerate according to a process of dynamic coalescence, typical of colloids, followed by atomic redistribution at the contact regions with the generation of multiple internal twins and stacking-faults. The normalized size distributions in terms of r/rmean follow also the prediction of the Smoluchowski ripening mechanism. No variation of the cluster density occurs for samples immersed in pure H2O solution. The different behavior might be associated to the strong attraction of clusters to oxide-terminated Si surface in presence of water. The silver clusters are instead weakly bound to hydrophobic H-terminated Si in presence of HF. HF causes then the detachment of clusters and a random movement on the silicon surface with mobility of about 10−13 cm2/s. Attractive interaction (probably van der Waals) among particles promotes coarsening.

1.
A.
Gutes
,
I.
Laboriante
,
C.
Carraro
, and
R.
Maboudian
,
J. Phys. Chem. C
113
,
16939
16944
(
2009
).
2.
C.
Burda
,
X.
Chen
,
R.
Narayanan
, and
M.
El Sayed
,
Chem. Rev.
105
,
1025
1102
(
2005
).
3.
A. C.
Chen
and
P. H.
Hindle
,
Chem. Rev.
110
,
3767
3804
(
2010
).
4.
5.
N.
Zeng
and
A. B.
Murphy
,
Nanotechnology
20
,
375702
(
2009
).
6.
H. A.
Atwater
and
A.
Polman
,
Nat. Mater.
9
,
205
213
(
2010
).
7.
D.
Derkacs
,
S. H.
Lim
,
P.
Matheu
,
W.
Mar
, and
E. T.
Yu
,
Appl. Phys. Lett.
89
,
093103
(
2006
).
8.
J. H.
Sukamoto
,
E.
Webb
,
T.
Andryushchenko
, and
J.
Reid
,
J. Appl. Electrochem.
34
,
283
290
(
2004
).
9.
J.
Ustarroz
,
J. A.
Hammons
,
T.
Altantzis
,
A.
Hubin
, and
S.
Bals
,
J. Am. Chem. Soc.
135
,
11550
11561
(
2013
).
10.
H.
Zheng
,
R. K.
Smith
,
Y.
Jun
,
C.
Kisielowski
,
U.
dahmen
, and
A. P.
Alivisatos
,
Science
324
,
1309
(
2009
).
11.
J.
Ustarroz
,
X.
Ke
,
A.
Hubin
,
S.
Bals
, and
H.
Terryn
,
J. Phys. Chem. C
116
,
2322
2329
(
2012
).
12.
S. C. S.
Lai
,
R. A.
Lazenby
,
P. M.
Kirkman
, and
P. R.
Unwin
,
Chem. Sci.
6
,
1126
1138
(
2015
).
13.
R. G.
Milazzo
,
G.
D’Arrigo
,
A. M.
Mio
,
C.
Spinella
,
M. G.
Grimaldi
, and
E.
Rimini
,
ECS J. Solid State Sci. Technol.
3
(
7
),
p235
p242
(
2014
).
14.
R. G.
Milazzo
,
A. M.
Mio
,
G.
D’Arrigo
,
C.
Spinella
,
M. G.
Grimaldi
, and
E.
Rimini
,
2014 IEEE 9th Nanotechnology Materials and Devices Conference (NMDC)
(
IEEE
,
2014
), pp.
37
40
.
15.
F. M.
Liu
and
M.
Green
,
J. Mater. Chem.
14
,
1526
-
1532
(
2004
).
16.
A.
Radisic
,
P. M.
Vereecken
,
J. B.
Hannon
,
P. C.
Searson
, and
F. M.
Ross
,
Nano Lett.
6
(
2
),
238
-
242
(
2006
).
17.
R. G.
Milazzo
,
G.
D’Arrigo
,
C.
Spinella
,
M. G.
Grimaldi
, and
E.
Rimini
,
J. Electrochem. Soc.
159
(
9
),
D521
-
D525
(
2012
).
18.
R. G.
Milazzo
,
G.
D’Arrigo
,
C.
Spinella
,
M. G.
Grimaldi
, and
E.
Rimini
,
ECS J. Solid State Sci. Technol.
2
(
9
),
P405
-
P412
(
2013
).
19.
P. L.
Redmond
,
A. J.
Hallock
, and
L. E.
Brus
,
Nano Lett.
5
(
1
),
131
135
(
2005
).
20.
F.
Wang
,
V. N.
Richards
,
S. P.
Shields
, and
W. E.
Buhro
,
Chem. Mater.
26
,
5
-
21
(
2014
).
21.
T. J.
Woehl
,
C.
Park
,
J. E.
Evans
,
I.
Arslan
, and
W. D.
Ristenpart
,
Nano Lett.
14
,
373
378
(
2014
).
22.
B. R.
Scharifker
and
J.
Monasty
,
J. Electroanal. Chem.
177
,
13
23
(
1984
).
23.
L.
Heerman
and
A.
Tarallo
,
J. Electroanal. Chem.
420
,
70
76
(
1999
).
24.
H.
Liu
and
R. M.
Penner
,
J. Phys. Chem. B
104
,
9131
-
9139
(
2000
).
25.
R. M.
Stiger
,
S.
Gorer
,
B.
Craft
, and
R. M.
Penner
,
Langmuir
15
,
790
798
(
1999
).
26.
N.
Uyeda
,
M.
Nishino
, and
E.
Suito
,
J. Colloid Interface Sci.
43
,
2
(
1973
).
27.
J. M.
Yuk
,
J.
Park
,
P.
Ercius
,
K.
Kim
,
D. J.
Hellebusch
,
M. F.
Crommie
,
Y. J.
Lee
,
A.
Zettl
, and
A. P.
Alivisatos
,
Science
336
,
61
-
64
(
2012
).
28.
D. S.
Sholl
and
R. T.
Skodje
,
Physica A
231
,
631
647
(
1996
).
30.
K. W.
Kolasinski
,
W. B.
Barclay
,
Y.
Sun
, and
M.
Aindow
,
Electrochim. Acta
158
,
219
228
(
2015
).
You do not currently have access to this content.