We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This “Landauer-Büttiker’s probe technique” can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, kBT/ϵB > 1/25, with ϵB as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker’s probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

1.
S. O.
Kelley
and
J. K.
Barton
,
Science
283
,
375
(
1999
).
2.
N. B.
Muren
,
E. D.
Olmon
, and
J. Q.
Barton
,
Phys. Chem. Chem. Phys.
14
,
13754
(
2012
).
3.
A. M.
Kuznetsov
,
Charge Transfer in Physics, Chemistry and Biology
(
Gordon and Breach
,
New York
,
1995
).
4.
V.
May
and
O.
Kuhn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
WileyVCH
,
Berlin
,
1999
).
5.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems
(
Oxford University Press
,
Oxford
,
2006
).
6.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
New York, NY
,
1995
).
7.
J. C.
Cuevas
and
E.
Scheer
,
Molecular Electronics: An Introduction to Theory and Experiment
(
World Scientific Publishing Company
,
Singapore
,
2010
).
8.
M.
Di Ventra
,
Electrical Transport in Nanoscale Systems
(
Cambridge University Press
,
Cambridge, UK
,
2008
).
9.
F. D.
Lewis
,
T.
Wu
,
Y.
Zhang
,
R. L.
Letsinger
,
S. R.
Greenfield
, and
M. R.
Wasielewski
,
Science
277
,
673
(
1997
).
10.
B.
Giese
,
Annu. Rev. Biochem.
71
(
1
),
51
(
2002
).
11.
J. C.
Genereux
,
S. M.
Wuerth
, and
J. K.
Barton
,
J. Am. Chem. Soc.
133
(
11
),
3863
(
2011
).
12.
G. I.
Livshits
,
A.
Stern
,
D.
Rotem
,
N.
Borovok
,
G.
Eidelshtein
,
A.
Migliore
,
E.
Penzo
,
S. J.
Wind
,
R.
Di Felice
,
S. S.
Skourtis
,
J. C.
Cuevas
,
L.
Gurevich
,
A. B.
Kotlyar
, and
D.
Porath
,
Nat. Nanotechnol.
9
,
1040
(
2014
).
13.
Y.
Selzer
,
M. A.
Cabassi
,
T. S.
Mayer
, and
D. L.
Allara
,
Nanotechnology
15
,
S483
(
2004
).
14.
Y.
Selzer
,
M. A.
Cabassi
,
T. S.
Mayer
, and
D. L.
Allara
,
J. Am. Chem. Soc.
126
,
4052
(
2004
).
15.
Y.
Selzer
and
D. L.
Allara
,
Annu. Rev. Phys. Chem.
57
,
593
(
2006
).
16.
E. A.
Weiss
,
M. J.
Tauber
,
R. F.
Kelley
,
M. J.
Ahrens
,
M. A.
Ratner
, and
M. R.
Wasielewski
,
J. Am. Chem. Soc.
127
,
11842
(
2005
).
17.
R. H.
Goldsmith
,
O.
DeLeon
,
T. M.
Wilson
,
D.
Finkelstein-Shapiro
,
M. A.
Ratner
, and
M. R.
Wasielewski
,
J. Phys. Chem. A
112
,
4410
(
2008
).
18.
S. H.
Choi
,
B.
Kim
, and
C. D.
Frisbie
,
Science
320
,
1482
(
2008
).
19.
L.
Luo
and
C. D.
Frisbie
,
J. Am. Chem. Soc.
132
,
8854
(
2010
).
20.
S. H.
Choi
,
C.
Risko
,
M. C. R.
Delgado
,
B.
Kim
,
J.-L.
Bredas
, and
C. D.
Frisbie
,
J. Am. Chem. Soc.
132
,
4358
(
2010
).
21.
L.
Luo
,
S. H.
Choi
, and
C. D.
Frisbie
,
Chem. Mater.
23
,
631
(
2011
).
22.
L.
Luo
,
A.
Benameur
,
P.
Brignou
,
S. H.
Choi
,
S.
Rigaut
, and
C. D.
Frisbie
,
J. Phys. Chem. C
115
,
19955
(
2011
).
23.
Q.
Lu
,
K.
Liu
,
H.
Zhang
,
Z.
Du
,
X.
Wang
, and
F.
Wang
,
ACS Nano
12
,
3861
(
2009
).
24.
S. A.
Di Benedetto
,
A.
Facchetti
,
M. A.
Ratner
, and
T. J.
Marks
,
J. Am. Chem. Soc.
131
(
20
),
7158
(
2009
).
25.
T.
Hines
,
I.
Diez-Perez
,
J.
Hihath
,
H.
Liu
,
Z. S.
Wang
,
J.
Zhao
,
G.
Zhou
,
K.
Müllen
, and
N.
Tao
,
J. Am. Chem. Soc.
132
,
11658
(
2010
).
26.
G.
Sedghi
,
V. M.
Garcia-Suarez
,
L. J.
Esdaile
,
H. L.
Anderson
,
C. J.
Lambert
,
S.
Martin
,
D.
Bethell
,
S. J.
Higgins
,
M.
Elliott
,
N.
Bennett
,
J. E.
Macdonald
, and
R. J.
Nichols
,
Nat. Nanotechnol.
6
,
517
(
2011
).
27.
Z.
Li
,
T.-H.
Park
,
J.
Rawson
,
M. J.
Therien
, and
E.
Borguet
,
Nano Lett.
12
,
2722
(
2012
).
28.
S. K.
Lee
,
R.
Yamada
,
S.
Tanaka
,
G. S.
Chang
,
Y.
Asai
, and
H.
Tada
,
ACS Nano
6
,
5078
(
2012
).
29.
L.
Sepunaru
,
N.
Friedman
,
I.
Pecht
,
M.
Sheves
, and
D.
Cahen
,
J. Am. Chem. Soc.
134
,
4169
(
2012
).
30.
V.
Kaliginedi
,
A. V.
Rudnev
,
P.
Moreno-Garcia
,
M.
Baghernejad
,
C.
Huang
,
W.
Hong
, and
T.
Wandlowski
,
Phys. Chem. Chem. Phys.
16
,
23529
(
2014
).
31.
C. C. B.
Bufon
,
C.
Vervacke
,
D. J.
Thurmer
,
M.
Fronk
,
G.
Salvan
,
S.
Lindner
,
M.
Knupfer
,
D. R. T.
Zahn
, and
O. G.
Schmidt
,
J. Phys. Chem. C
118
,
7272
(
2014
).
32.
A.
Mitra
,
I.
Aleiner
, and
A. J.
Millis
,
Phys. Rev. B
69
,
245302
(
2004
).
33.
F.
Haupt
,
M.
Leijnse
,
H. L.
Calvo
,
L.
Classen
,
J.
Splettstoesser
, and
M. R.
Wegewijs
,
Phys. Status Solidi B
250
,
2315
(
2013
).
34.
M.
Galperin
,
M. A.
Ratner
, and
A.
Nitzan
,
J. Phys.: Condens. Matter
19
,
103201
(
2007
).
35.
R.
Hützen
,
S.
Weiss
,
M.
Thorwart
, and
R.
Egger
,
Phys. Rev. B
85
,
121408
(
2012
).
36.
L.
Simine
and
D.
Segal
,
J. Chem. Phys.
138
,
214111
(
2013
).
37.
E. Y.
Wilner
,
H.
Wang
,
M.
Thoss
, and
E.
Rabani
,
Phys. Rev. B
89
,
205129
(
2014
).
38.
X.
Zheng
,
F.
Wang
,
C. Y.
Yam
,
Y.
Mo
, and
G.-H.
Chen
,
Phys. Rev. B
75
,
195127
(
2007
).
39.
R.
Wang
,
D.
Hou
, and
X.
Zheng
,
Phys. Rev. B
88
,
205126
(
2013
).
40.
Y.
Zhang
,
C.-Y.
Yam
, and
G.-H.
Chen
,
J. Chem. Phys.
142
,
164101
(
2015
).
41.
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press, Oxford
,
2002
).
42.
A. K.
Felts
,
W. T.
Pollard
, and
R. A.
Friesner
,
J. Phys. Chem.
99
,
2929
(
1999
).
43.
A.
Okada
,
V.
Chernyak
, and
S.
Mukamel
,
J. Phys. Chem. A
102
,
1241
(
1998
).
44.
W. B.
Davis
,
M. R.
Wasielewski
,
M. A.
Ratner
,
V.
Mujica
, and
A.
Nitzan
,
J. Phys. Chem. A
101
,
6158
(
1997
).
45.
D.
Segal
,
A.
Nitzan
,
W. B.
Davis
,
M. R.
Wasielewsky
, and
M. A.
Ratner
,
J. Phys. Chem. B
104
,
3817
(
2000
).
46.
D.
Segal
,
A.
Nitzan
,
M. A.
Ratner
, and
W. B.
Davis
,
J. Phys. Chem. B
104
,
2790
(
2000
).
47.
E. G.
Petrov
,
Ye. V.
Shevchenko
,
V. I.
Teslenko
, and
V.
May
,
J. Chem. Phys.
115
,
7107
(
2001
).
48.
E. G.
Petrov
and
V.
May
,
J. Phys. Chem. A
105
,
10176
(
2001
).
49.
E. A.
Weiss
,
G.
Katz
,
R. H.
Goldsmith
,
M. R.
Wasielewski
,
M. A.
Ratner
,
R.
Kosloff
, and
A.
Nitzan
,
J. Chem. Phys.
124
,
074501
(
2006
).
50.
M.
Zarea
,
D.
Powell
,
N.
Renaud
,
M. R.
Wasielewski
, and
M. A.
Ratner
,
J. Phys. Chem. B
117
(
4
),
1010
(
2013
).
51.
N.
Renaud
,
Y. A.
Berlin
,
F. D.
Lewis
, and
M. A.
Ratner
,
J. Am. Chem. Soc.
135
,
3953
(
2013
).
52.
U.
Harbola
,
M.
Esposito
, and
S.
Mukamel
,
Phys. Rev. B
74
,
235309
(
2006
).
53.
C.
Timm
,
Phys. Rev. B
77
,
195416
(
2008
).
54.
L.
Kecke
and
J.
Ankerhold
, e-print arXiv:1301.2422.
55.
D.
Segal
,
Phys. Rev. B
72
,
165426
(
2005
).
56.
L.-Y.
Hsu
,
N.
Wu
, and
H.
Rabitz
,
J. Phys. Chem. Lett.
5
,
1831
(
2014
).
57.
M.
Büttiker
,
Phys. Rev. B
32
,
1846
(
1985
).
58.
M.
Büttiker
,
Phys. Rev. B
33
,
3020
(
1986
).
59.
J.
Damato
and
H. M.
Pastawski
,
Phys. Rev. B
41
,
7411
(
1990
).
60.
Y.
Xue
,
S.
Datta
, and
M.
Ratner
,
Chem. Phys.
281
,
151
170
(
2002
).
61.
D.
Roy
and
A.
Dhar
,
Phys. Rev. B
75
,
195110
(
2007
).
62.
J. H.
Jiang
,
O.
Entin-Wohlman
, and
Y.
Imry
,
Phys. Rev. B
85
,
075412
(
2012
).
63.
G.
Benenti
,
K.
Saito
, and
G.
Casati
,
Phys. Rev. Lett.
106
,
230602
(
2011
).
64.
S.
Bedkihal
,
M.
Bandyopadhyay
, and
D.
Segal
,
Eur. Phys. J. B
86
,
506
(
2013
).
65.
Y.
Utsumi
,
O.
Entin-Wohlman
,
A.
Aharony
,
T.
Kubo
, and
Y.
Tokura
,
Phys. Rev. B
89
,
205314
(
2014
).
66.
W. M.
Visscher
and
M.
Rich
,
Phys. Rev. A
12
,
675
(
1975
).
67.
F.
Bonetto
,
J. L.
Lebowitz
, and
J.
Lukkarinen
,
J. Stat. Phys.
116
,
783
(
2004
).
68.
A.
Dhar
and
D.
Roy
,
J. Stat. Phys.
125
,
801
(
2006
).
69.
D.
Roy
,
Phys. Rev. E
77
,
062102
(
2008
).
70.
D.
Segal
,
Phys. Rev. E
79
,
012103
(
2009
).
71.
F.
Barros
,
H. C. F.
Lemos
, and
E.
Pereira
,
Phys. Rev. E
74
,
052102
(
2006
).
72.
M.
Bandyopadhyay
and
D.
Segal
,
Phys. Rev. E
84
,
011151
(
2011
).
73.
K.
Saaskilahti
,
J.
Oksanen
, and
J.
Tulkki
,
Phys. Rev. E
88
,
012128
(
2013
).
74.
D.
Nozaki
,
Y.
Girard
, and
K.
Yoshizawa
,
J. Phys. Chem. C
112
,
17408
(
2008
).
75.
D.
Nozaki
,
C. G.
da Rocha
,
H. M.
Pastawski
, and
G.
Cuniberti
,
Phys. Rev. B
85
,
155327
(
2012
).
76.
S. G.
Chen
,
Y.
Zhang
,
S. K.
Koo
,
H.
Tian
,
C. Y.
Yam
,
G. H.
Chen
, and
M. A.
Ratner
,
J. Phys. Chem. Lett.
5
,
2748
(
2014
).
77.
R.
Venkataramani
,
E.
Wierzbinski
,
D. H.
Waldeck
, and
D. N.
Beratan
,
Faraday Discuss.
174
,
57
(
2014
).
78.
D. N.
Beratan
,
C.
Liu
,
A.
Migliore
,
N. F.
Polizzi
,
S. S.
Skourtis
,
P.
Zhang
, and
Y.
Zhang
,
Acc. Chem. Res.
48
,
474
(
2014
).
79.
A.
Troisi
,
M. A.
Ratner
, and
A.
Nitzan
,
J. Chem. Phys.
119
,
5782
(
2003
).
80.
J.
Lehmann
,
G.-L.
Ingold
, and
P.
Hänggi
,
Chem. Phys.
291
,
199
(
2002
).
81.
A.
Nitzan
,
J. Phys. Chem. A
105
(
12
),
2677
(
2001
).
82.
A.
Nitzan
,
Isr. J. Chem.
42
,
163
(
2002
).
83.
K. H.
Khoo
,
Y.
Chen
,
S.
Li
, and
S. Y.
Quek
,
Phys. Chem. Chem. Phys.
17
,
77
(
2015
).
84.
P.
Reddy
,
S.-Y.
Jang
,
R. A.
Segalman
, and
A.
Majumdar
,
Science
315
,
1568
(
2007
).
85.
Y.
Kim
,
W.
Jeong
,
K.
Kim
,
W.
Lee
, and
P.
Reddy
,
Nat. Nanotechnol.
9
,
881
(
2014
).
86.
L. A.
Zotti
,
M.
Bürkle
,
F.
Pauly
,
W.
Lee
,
K.
Kim
,
W.
Jeong
,
Y.
Asai
,
P.
Reddy
, and
J. C.
Cuevas
,
New J. Phys.
16
,
015004
(
2014
).
87.
E.
Wierzbinski
,
R.
Venkataramani
,
K. L.
Davis
,
S.
Bezer
,
J.
Kong
,
Y.
Xing
,
E.
Borguet
,
C.
Achim
,
D. N.
Beratan
, and
D. H.
Waldeck
,
ACS Nano
7
,
5391
(
2013
).
88.
H. A.
Kramers
,
Physica
7
,
284
(
1940
).
89.
P.
Rebentrost
,
M.
Mohseni
,
I.
Kassal
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
New J. Phys.
11
,
033003
(
2009
).
90.
V.
Mujica
,
A. E.
Roitberg
, and
M. A.
Ratner
,
J. Chem. Phys.
112
,
6834
(
2000
).
91.
G. C.
Liang
,
A. W.
Ghosh
,
M.
Paulsson
, and
S.
Datta
,
Phys. Rev. B
69
,
115302
(
2004
).
92.
J. M.
Beebe
,
B.
Kim
,
J. W.
Gadzuk
,
C. D.
Frisbie
, and
J. G.
Kushmerick
,
Phys. Rev. Lett.
97
,
026801
(
2006
).
93.
J. M.
Beebe
,
B. S.
Kim
,
C. D.
Frisbie
, and
J. G.
Kushmerick
,
ACS Nano
2
,
827
(
2008
).
94.
T.
Markussen
,
J.
Chen
, and
K. S.
Thygesen
,
Phys. Rev. B
83
,
155407
(
2011
).
95.
A.
Vilan
,
D.
Cahen
, and
E.
Kraisler
,
ACS Nano
7
,
695
(
2013
).
96.
A.
Landau
,
L.
Kronik
, and
A.
Nitzan
,
J. Comput. Theor. Nanosci.
5
,
535
(
2008
).
97.
R.
Liu
,
S.-H.
Ke
,
H. U.
Baranger
, and
W.
Yang
,
J. Chem. Phys.
122
,
044703
(
2005
).
98.
M. G.
Reuter
,
G. C.
Solomon
,
T.
Hansen
,
T.
Seideman
, and
M. A.
Ratner
,
J. Phys. Chem. Lett.
2
(
14
),
1667
(
2011
).
99.
M. G.
Reuter
,
T.
Seideman
, and
M. A.
Ratner
,
Nano Lett.
11
(
11
),
4693
(
2011
).
100.
M. G.
Reuter
,
M. C.
Hersam
,
T.
Seideman
, and
M. A.
Ratner
,
Nano Lett.
12
,
2243
(
2012
).
101.
L.
Simine
,
W. J.
Chen
, and
D.
Segal
,
J. Phys. Chem. C
119
,
12097
(
2015
).
102.
B.
Capozzi
,
J.
Xia
,
O.
Adak
,
E. J.
Dell
,
Z.-F.
Liu
,
J. C.
Taylor
,
J. B.
Neaton
,
L. M.
Campos
, and
L.
Venkataraman
,
Nat. Nanotechnol.
10
,
522
(
2015
).
You do not currently have access to this content.