We studied silica dimerization reactions in the gas and aqueous phase by density functional theory (DFT) and reactive force fields based on two parameterizations of ReaxFF. For each method (both ReaxFF force fields and DFT), we performed constrained geometry optimizations, which were subsequently evaluated in single point energy calculations using the other two methods. Standard fitting procedures typically compare the force field energies and geometries with those from quantum mechanical data after a geometry optimization. The initial configurations for the force field optimization are usually the minimum energy structures of the ab initio database. Hence, the ab initio method dictates which structures are being examined and force field parameters are being adjusted in order to minimize the differences with the ab initio data. As a result, this approach will not exclude the possibility that the force field predicts stable geometries or low transition states which are realistically very high in energy and, therefore, never considered by the ab initio method. Our analysis reveals the existence of such unphysical geometries even at unreactive conditions where the distance between the reactants is large. To test the effect of these discrepancies, we launched molecular dynamics simulations using DFT and ReaxFF and observed spurious reactions for both ReaxFF force fields. Our results suggest that the standard procedures for parameter fitting need to be improved by a mutual comparative method.

1.
T. T.
Trinh
,
A. P. J.
Jansen
,
R. A.
van Santen
, and
E. J.
Meijer
,
J. Phys. Chem. C
113
,
2647
(
2009
).
2.
J. C. G.
Pereira
,
C. R. A.
Catlow
, and
G. D.
Price
,
J. Phys. Chem. A
103
,
3252
(
1999
).
3.
J. C. G.
Pereira
,
C. R. A.
Catlow
, and
G. D.
Price
,
J. Phys. Chem. A
103
,
3268
(
1999
).
4.
J. M.
Fedeyko
,
D. G.
Vlachos
, and
R. F.
Lobo
,
Langmuir
21
,
5197
(
2005
).
5.
S. A.
Pelster
,
W.
Schrader
, and
F.
Schüth
,
J. Am. Chem. Soc.
128
,
4310
(
2006
).
6.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York, Oxford
,
1989
).
7.
J. C. G.
Pereira
,
C. R. A.
Catlow
, and
G. D.
Price
,
Chem. Commun.
115
,
1387
(
1998
).
8.
J. A.
Tossell
,
Geochim. Cosmochim. Acta
69
,
283
(
2005
).
9.
Y. T.
Xiao
and
A. C.
Lasaga
,
Geochim. Cosmochim. Acta
60
,
2283
(
1996
).
10.
T. T.
Trinh
,
A. P. J.
Jansen
, and
R. A.
Santen
,
J. Phys. Chem. B
110
,
23099
(
2006
).
11.
H.
Hu
,
H.
Hou
,
Z.
He
, and
B.
Wang
,
Phys. Chem. Chem. Phys.
15
,
15027
(
2013
).
12.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
13.
D. E.
Shaw
,
P.
Maragakis
,
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
,
M. P.
Eastwood
,
J. A.
Bank
,
J. M.
Jumper
,
J. K.
Salmon
,
Y.
Shan
, and
W.
Wriggers
,
Science
330
,
341
(
2010
).
14.
R. O.
Dror
,
T. J.
Mildorf
,
D.
Hilger
,
A.
Manglik
,
D. W.
Borhani
,
D. H.
Arlow
,
A.
Philippsen
,
N.
Villanueva
,
Z.
Yang
,
M. T.
Lerch
,
W. L.
Hubbell
,
B. K.
Kobilka
,
R. K.
Sunahara
, and
D. E.
Shaw
,
Science
348
,
1361
(
2015
).
15.
A.
Warshel
and
R. M.
Weiss
,
J. Am. Chem. Soc.
102
,
6218
(
1980
).
16.
J.
Åqvist
and
A.
Warshel
,
Chem. Rev.
93
,
2523
(
1993
).
17.
J.
Tersoff
,
Phys. Rev. Lett.
56
,
632
(
1986
).
18.
D. W.
Brenner
,
Phys. Rev. B
42
,
9458
(
1990
);
Erratum,
D. W.
Brenner
,
Phys. Rev. B
46
,
1948
(
1992
).
19.
D. W.
Brenner
,
O. A.
Shenderova
,
J. A.
Harrison
,
S. J.
Stuart
,
B.
Ni
, and
S. B.
Sinnott
,
J. Phys.: Condens. Matter
14
,
783
(
2002
).
20.
D. G.
Pettifor
,
Phys. Rev. Lett.
63
,
2480
(
1989
).
21.
E.
Shustorovich
,
Adv. Catal.
37
,
101
(
1990
).
22.
E.
Shustorovich
and
H.
Sellers
,
Surf. Sci. Rep.
31
,
1
(
1998
).
23.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
);
Erratum,
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
33
,
1451
(
1986
).
24.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. Lett.
62
,
2144
(
1989
).
25.
D.
Kohen
,
J. C.
Tully
, and
F. H.
Stillinger
,
Surf. Sci.
397
,
225
(
1998
).
26.
A. J.
Dyson
and
P. V.
Smith
,
Surf. Sci.
355
,
140
(
1996
).
27.
A. J.
Dyson
and
P. V.
Smith
,
Surf. Sci.
396
,
24
(
1998
).
28.
D.
Humbird
and
D. B.
Graves
,
J. Chem. Phys.
120
,
2405
(
2004
).
29.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
,
J. Phys. Chem. A
105
,
9396
(
2001
).
30.
A. K.
Rappe
and
W. A.
Goddard
,
J. Phys. Chem.
95
,
3358
(
1991
).
31.
J. E.
Mueller
,
A. C. T.
van Duin
, and
W. A.
Goddard
,
J. Phys. Chem. C
114
,
4939
(
2010
).
32.
S.
Agrawalla
and
A. C. T.
van Duin
,
J. Phys. Chem. A
115
,
960
(
2011
).
33.
X. M.
Cheng
,
Q. D.
Wang
,
J. Q.
Li
,
J. B.
Wang
, and
X. Y.
Li
,
J. Phys. Chem. A
116
,
9811
(
2012
).
34.
M.
Raju
,
S. Y.
Kim
,
A. C. T.
van Duin
, and
K. A.
Fichthorn
,
J. Phys. Chem. C
117
,
10558
(
2013
).
35.
A.
Ostadhossein
,
E. D.
Cubuk
,
G. A.
Tritsaris
,
E.
Kaxiras
,
S.
Zhang
, and
A. C. T.
van Duin
,
Phys. Chem. Chem. Phys.
17
,
3832
(
2015
).
36.
A. C. T.
van Duin
,
ReaxFF User Manual
(
Materials and Process Simulation Center
,
2002
).
37.
A. C. T.
van Duin
,
A.
Strachan
,
S.
Stewman
,
Q.
Zhang
,
X.
Xu
, and
W. A
Goddard
,
J. Phys. Chem. A
107
,
3803
(
2003
).
38.
S.
Dumpala
,
S. R.
Broderick
,
U.
Khalilov
,
E. C.
Neyts
,
A. C. T.
van Duin
,
J.
Provine
,
R. T.
Howe
, and
K.
Rajan
,
Appl. Phys. Lett.
106
,
011602
(
2015
).
39.
J. C.
Fogarty
,
H. M.
Aktulga
,
A. Y.
Grama
,
A. C. T.
Van Duin
, and
S. A.
Pandit
,
J. Chem. Phys.
132
,
174704
(
2010
).
40.
H. R.
Larsson
,
A. C. T.
van Duin
, and
B.
Hartke
,
J. Comput. Chem.
34
,
2178
(
2013
).
41.
T.
Verstraelen
,
P.
Bultinck
,
V.
Van Speybroeck
,
P. W.
Ayers
,
D.
Van Neck
, and
M.
Waroquier
,
J. Chem. Theory Comput.
7
,
1750
(
2011
).
42.
H.
Li
and
W.
Yang
,
J. Chem. Phys.
126
,
114104
(
2007
).
43.
A.
Lervik
and
T. S.
van Erp
,
J. Chem. Theory Comput.
11
,
2440
(
2015
).
44.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
45.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
46.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
47.
J.
Baker
,
M.
Muir
,
J.
Andzelm
, and
A.
Scheiner
,
ACS Symp. Ser.
629
,
342
(
1996
).
48.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
49.
E.
van Lenthe
and
E. J.
Baerends
,
J. Comput. Chem.
9
,
1142
(
2003
).
50.
D. P.
Chong
,
Mol. Phys.
103
,
749
(
2005
).
51.
D. P.
Chong
,
E.
van Lenthe
,
S. J. A.
van Gisbergen
, and
E.
Jan Baerends
,
J. Comput. Chem.
25
,
1030
(
2003
).
52.
G.
Maroulis
,
Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules and Clusters
(
IOS Press
,
Amsterdam
,
2006
).
53.
Mi.
Güell
,
J. M.
Luis
,
M.
Solà
, and
M.
Swart
,
J. Phys. Chem. A
112
,
6384
(
2008
).
54.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Phys. Commun.
167
,
103
(
2005
).
55.
See http://www.nanosim.mat.ethz.ch/research/CP2K for CP2K: High Performance Computing.
56.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
57.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
58.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
59.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
60.
T. T.
Trinh
,
A. P. J.
Jansen
,
R. A.
van Santen
, and
E.
Jan Meijer
,
Phys. Chem. Chem. Phys.
11
,
5092
(
2009
).
61.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
62.
E.
Carter
,
G.
Ciccoti
, and
J. T.
Hynes
,
Chem. Phys. Lett.
156
,
472
(
1989
).
63.
A.
Pavlova
,
T. T.
Trinh
,
R. A.
van Santen
, and
E. J.
Meijer
,
Phys. Chem. Chem. Phys.
15
,
1123
(
2013
).
64.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
65.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
San Diego, CA
,
2005
).
66.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
67.
K.
Chenoweth
,
A. C. T.
van Duin
, and
W. A.
Goddard
,
J. Phys. Chem. A
112
,
1040
(
2008
).
68.
T. T.
Trinh
,
A. P.
Jansen
,
R. A.
van Santen
,
J.
VandeVondele
, and
E. J.
Meijer
,
ChemPhysChem
10
,
1775
(
2009
).
69.
Y. T.
Xiao
and
A. C.
Lasaga
,
Geochim. Cosmochim. Acta
58
,
5379
(
1994
).
70.
C. C.
Harrison
and
N.
Loton
,
J. Chem. Soc., Faraday Trans.
91
,
4287
(
1995
).
71.
S. L.
Burkett
and
M. E.
Davis
,
Chem. Mater.
7
,
1453
(
1995
).
72.
A.
Grossfield
,
P.
Ren
, and
J. W.
Ponder
,
J. Am. Chem. Soc.
125
,
15671
(
2003
).
73.
D.
Bucher
,
L.
Guidoni
,
P.
Carloni
, and
U.
Rothlisberger
,
Biophys. J.
98
,
L47
(
2010
).
74.
C. N.
Rowley
and
B.
Roux
,
J. Chem. Theory Comput.
8
,
3526
(
2012
).
75.
S. B.
Zhu
and
G. W.
Robinson
,
J. Chem. Phys.
97
,
4336
(
1992
).
76.
D. A.
Schmidt
and
K.
Miki
,
ChemPhysChem
9
,
1914
(
2008
).
77.
N. T.
Skipper
and
G. W.
Neilson
,
J. Phys.: Condens. Matter
1
,
4141
(
1989
).
78.
R.
Mancinelli
,
A.
Botti
,
F.
Bruni
,
M. A.
Ricci
, and
A. K.
Soper
,
J. Phys. Chem. B
111
,
13570
(
2007
).
79.
A.
Tongraar
,
K. R.
Liedl
, and
B. M.
Rode
,
J. Phys. Chem. A
102
,
10340
(
1998
).
You do not currently have access to this content.