The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh–Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg–Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg–Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh–Ritz ground-state densities and the Hohenberg–Kohn ground-state densities are identical. We apply the results to molecular systems in the Born–Oppenheimer approximation. For any given potential vL3/2(ℝ3) + L(ℝ3), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh–Ritz variation principle and the mixed ground-state densities of the Hohenberg–Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh–Ritz variation principle and the pure ground-state densities obtained using the Hohenberg–Kohn variation principle with the Levy–Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

1.
L.
Thomas
,
Math. Proc. Cambridge Philos. Soc.
23
,
542
(
1927
).
2.
E.
Fermi
,
Rend. Accad. Naz. Lincei
6
,
602
(
1927
).
3.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
4.
E. H.
Lieb
,
Int. J. Quantum Chem.
24
,
243
(
1983
).
5.
M.
Levy
,
Proc. Natl. Acad. Sci. U. S. A.
76
,
6062
(
1979
).
6.
G.
Vignale
and
M.
Rasolt
,
Phys. Rev. Lett.
59
,
2360
(
1987
).
7.
G.
Vignale
and
M.
Rasolt
,
Phys. Rev. B
37
,
10685
(
1988
).
8.
A.
Laestadius
,
Int. J. Quantum Chem.
114
,
1445
(
2014
).
9.
J.
van Tiel
,
Convex Analysis: An Introductory Text
(
Wiley
,
Chichester
,
1984
).
10.
I.
Ekeland
and
R.
Témam
,
Convex Analysis and Variational Problems
(
SIAM
,
Philadelphia
,
1999
).
11.
P.
Lammert
,
Int. J. Quantum Chem.
107
,
1943
(
2007
).
12.
R.
Rockafellar
,
Pac. J. Math.
25
,
597
(
1968
).
13.
14.
B.
Simon
,
Commun. Math. Phys.
21
,
192
(
1971
).
15.
T.-S.
Liu
and
J.-K.
Wang
,
Math. Scand.
23
,
241
(
1968
).
16.
E.
Tellgren
,
S.
Kvaal
,
E.
Sagvolden
,
U.
Ekstrm
,
A.
Teale
, and
T.
Helgaker
,
Phys. Rev. A
86
,
062506
(
2012
).
17.
E.
Lieb
and
M.
Loss
,
Analysis
, 2nd ed. (
American Mathematical Society
,
Providence, Rhode Island, USA
,
2001
).
You do not currently have access to this content.