We describe a robust and efficient chain-of-states method for computing Minimum Energy Paths (MEPs) associated to barrier-crossing events in poly-atomic systems, which we call the acceleration method. The path is parametrized in terms of a continuous variable t ∈ [0, 1] that plays the role of time. In contrast to previous chain-of-states algorithms such as the nudged elastic band or string methods, where the positions of the states in the chain are taken as variational parameters in the search for the MEP, our strategy is to formulate the problem in terms of the second derivatives of the coordinates with respect to t, i.e., the state accelerations. We show this to result in a very simple and efficient method for determining the MEP. We describe the application of the method to a series of test cases, including two low-dimensional problems and the Stone-Wales transformation in C60.

1.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Cocker
(
World Scientific
,
1998
), Chap. 16, p.
385
.
2.
D.
Chandler
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Cocker
(
World Scientific
,
1998
), Chap. 3, p.
51
.
3.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
4.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
,
J. Chem. Phys.
108
,
1964
(
1998
).
5.
E. M.
Sevick
,
A. T.
Bell
, and
D. N.
Theodorou
,
J. Chem. Phys.
98
,
3196
(
1993
).
6.
7.
A.
Banerjee
,
N.
Adams
,
J.
Simons
, and
R.
Shepard
,
J. Phys. Chem.
89
,
1
(
1985
).
8.
J.
Baker
,
J. Comput. Chem.
7
,
385
(
1886
).
9.
L. J.
Munro
and
D. J.
Wales
,
Phys. Rev. B
59
,
3969
(
1999
).
10.
Y.
Kumeda
,
D. J.
Wales
, and
L. J.
Munro
,
Chem. Phys. Lett.
341
,
185
(
2001
).
11.
Y.
Zeng
,
P.
Xiao
, and
G.
Henkelman
,
J. Chem. Phys.
140
,
044115
(
2014
).
12.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
13.
M.
Page
and
J. W.
McIver
,
J. Chem. Phys.
88
,
922
(
1988
).
14.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
15.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
16.
S. A.
Trygubenko
and
D. J.
Wales
,
J. Chem. Phys.
120
,
2082
(
2004
).
17.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
18.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
126
,
164103
(
2007
).
19.
E. F.
Koslover
and
D. J.
Wales
,
J. Chem. Phys.
127
,
134102
(
2007
).
20.
D.
Sheppard
,
R.
Terrell
, and
G.
Henkelman
,
J. Chem. Phys.
128
,
134106
(
2008
).
21.

A simple Python script implementing this methodology in combination with the LEPS and Müller potentials is available upon request from the corresponding author.

22.
K.
Mueller
and
L. D.
Brown
,
Theor. Chim. Acta
53
,
75
(
1979
).
23.
A. J.
Stone
and
D. J.
Wales
,
Chem. Phys. Lett.
128
,
501
(
1986
).
24.
25.
E. R.
Hernández
,
P.
Ordejón
, and
H.
Terrones
,
Phys. Rev. B
63
,
193403
(
2001
).
26.
M. B.
Nardelli
,
B. I.
Yakobson
, and
J.
Bernholc
,
Phys. Rev. B
57
,
R4277
(
1998
).
27.
M. B.
Nardelli
,
B. I.
Yakobson
, and
J.
Bernholc
,
Phys. Rev. Lett.
81
,
4656
(
1998
).
28.
Y.
Kumeda
and
D. J.
Wales
,
Chem. Phys. Lett.
374
,
125
(
2003
).
29.
H. F.
Bettinger
,
B.
Yakobson
, and
G. E.
Scuseria
,
J. Am. Chem. Soc.
125
,
5572
(
2003
).
30.
31.
C.
Xu
,
C.
Wang
,
C.
Chan
, and
K.
Ho
,
J. Phys.: Condens. Matter
4
,
6047
(
1992
).
32.
D.
Porezag
,
T.
Frauenheim
,
T.
Koehler
,
G.
Seifert
, and
R.
Kaschner
,
Phys. Rev. B
51
,
12947
(
1995
).
33.
R.
Rurali
and
E.
Hernández
,
Comput. Mater. Sci.
28
,
85
(
2003
).
34.
P. A.
Marcos
,
M. J.
López
,
A.
Rubio
, and
J. A.
Alonso
,
Chem. Phys. Lett.
273
,
367
(
1997
).
35.
C. M.
Goringe
,
D. R.
Bowler
, and
E. R.
Hernández
,
Rep. Prog. Phys.
60
,
1447
(
1997
).
36.
T. R.
Walsh
and
D. J.
Wales
,
J. Chem. Phys.
109
,
6691
(
1998
).
You do not currently have access to this content.