Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal PtN nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for PtN, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D6h symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of PtN clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt57 motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d96s1) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about PtN clusters are also applicable to IrN clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

1.
W. P.
Halperin
,
Rev. Mod. Phys.
58
,
533
(
1986
).
2.
D. I.
Gittins
,
D.
Bethell
,
D. J.
Schiffrin
, and
R. J.
Nichols
,
Nature
408
,
67
(
2000
).
3.
H. G.
Boyen
,
G.
Kastle
,
F.
Weigl
,
B.
Koslowski
,
C.
Dietrich
,
P.
Ziemann
,
J. P.
Spatz
,
S.
Riethmuller
,
C.
Hartmann
,
M.
Moller
 et al.,
Science
297
,
1533
(
2002
).
4.
A. A.
Herzing
,
C. J.
Kiely
,
A. F.
Carley
,
P.
Landon
, and
G. J.
Hutchings
,
Science
321
,
1331
(
2008
).
5.
O.
Echt
,
K.
Sattler
, and
E.
Recknagel
,
Phys. Rev. Lett.
47
,
1121
(
1981
).
6.
W. D.
Knight
,
K.
Clemenger
,
W. A.
de Heer
,
W. A.
Saunders
,
M. Y.
Chou
, and
M. L.
Cohen
,
Phys. Rev. Lett.
52
,
2141
(
1984
).
7.
H. W.
Kroto
,
J. R.
Heath
,
S. C.
Obrien
,
R. F.
Curl
, and
R. E.
Smalley
,
Nature
318
,
162
(
1985
).
8.
X.
Li
,
A.
Grubisic
,
S. T.
Stokes
,
J.
Cordes
,
G. F.
Ganteför
,
K. H.
Bowen
,
B.
Kiran
,
M.
Willis
,
P.
Jena
,
R.
Burgert
 et al.,
Science
315
,
356
(
2007
).
9.
A. F.
Hebard
,
M. J.
Rosseinsky
,
R. C.
Haddon
,
D. W.
Murphy
,
S. H.
Glarum
,
T. T. M.
Palstra
,
A. P.
Ramirez
, and
A. R.
Kortan
,
Nature
350
,
600
(
1991
).
10.
M.
Yoon
,
S.
Yang
,
C.
Hicke
,
E.
Wang
,
D.
Geohegan
, and
Z.
Zhang
,
Phys. Rev. Lett.
100
,
206806
(
2008
).
11.
S. N.
Khanna
and
P.
Jena
,
Phys. Rev. Lett.
69
,
1664
(
1992
).
12.
S. F.
Li
,
X. J.
Zhao
,
X. S.
Xu
,
Y. F.
Gao
, and
Z.
Zhang
,
Phys. Rev. Lett.
111
,
115501
(
2013
).
13.
T.
Rapps
,
R.
Ahlrichs
,
E.
Waldt
,
M. M.
Kappes
, and
D.
Schooss
,
Angew. Chem., Int. Ed.
52
,
6102
(
2013
).
14.
S.
Yin
,
X.
Xu
,
A.
Liang
,
J.
Bowlan
,
R.
Moro
, and
W.
de Heer
,
J. Supercond. Novel Magn.
21
,
265
(
2008
).
15.
W.
Huang
,
M.
Ji
,
C.-D.
Dong
,
X.
Gu
,
L.-M.
Wang
,
X. G.
Gong
, and
L.-S.
Wang
,
ACS Nano
2
,
897
(
2008
).
16.
C. M.
Chang
and
M. Y.
Chou
,
Phys. Rev. Lett.
93
,
133401
(
2004
).
17.
H.
Häkkinen
,
M.
Moseler
, and
U.
Landman
,
Phys. Rev. Lett.
89
,
033401
(
2002
).
18.
H.
Häkkinen
,
M.
Moseler
,
O.
Kostko
,
N.
Morgner
,
M. A.
Hoffmann
, and
B. v.
Issendorff
,
Phys. Rev. Lett.
93
,
093401
(
2004
).
19.
L.-S.
Wang
,
Phys. Chem. Chem. Phys.
12
,
8694
(
2010
).
20.
X.-B.
Wang
,
Y.-L.
Wang
,
J.
Yang
,
X.-P.
Xing
,
J.
Li
, and
L.-S.
Wang
,
J. Am. Chem. Soc.
131
,
16368
(
2009
).
21.
S.
Bulusu
,
X.
Li
,
L.-S.
Wang
, and
X. C.
Zeng
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
8326
(
2006
).
22.
M.
Valden
,
X.
Lai
, and
D. W.
Goodman
,
Science
281
,
1647
(
1998
).
23.
T.
Bunluesin
,
R. J.
Gorte
, and
G. W.
Graham
,
Appl. Catal., B
15
,
107
(
1998
).
24.
K. M.
Bratlie
,
H.
Lee
,
K.
Komvopoulos
,
P.
Yang
, and
G. A.
Somorjai
,
Nano Lett.
7
,
3097
(
2007
).
25.
Y.
Mu
,
H.
Liang
,
J.
Hu
,
L.
Jiang
, and
L.
Wan
,
J. Phys. Chem. B
109
,
22212
(
2005
).
26.
M. L.
Anderson
,
R. M.
Stroud
, and
D. R.
Rolison
,
Nano Lett.
2
,
235
(
2002
).
27.
K.
Vinodgopal
,
M.
Haria
,
D.
Meisel
, and
P.
Kamat
,
Nano Lett.
4
,
415
(
2004
).
28.
P.
Pyykko
and
J. P.
Desclaux
,
Acc. Chem. Res.
12
,
276
(
1979
).
29.
Y.
Sun
,
M.
Zhang
, and
R.
Fournier
,
Phys. Rev. B
77
,
075435
(
2008
).
30.
M.
Zhang
and
R.
Fournier
,
Phys. Rev. A
79
,
043203
(
2009
).
31.
F.
Baletto
,
R.
Ferrando
,
A.
Fortunelli
,
F.
Montalenti
, and
C.
Mottet
,
J. Chem. Phys.
116
,
3856
(
2002
).
32.
E.
Aprà
and
A.
Fortunelli
,
J. Phys. Chem. A
107
,
2934
(
2003
).
33.
V.
Kumar
and
Y.
Kawazoe
,
Phys. Rev. B
77
,
205418
(
2008
).
34.
J. L. F.
Da Silva
,
H. G.
Kim
,
M. J.
Piotrowski
,
M. J.
Prieto
, and
G.
Tremiliosi-Filho
,
Phys. Rev. B
82
,
205424
(
2010
).
35.
E.
Aprà
,
F.
Baletto
,
R.
Ferrando
, and
A.
Fortunelli
,
Phys. Rev. Lett.
93
,
065502
(
2004
).
36.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
37.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
38.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
39.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
40.
J. C.
Fabbi
,
J. D.
Langenberg
,
Q. D.
Costello
,
M. D.
Morse
, and
L.
Karlsson
,
J. Chem. Phys.
115
,
7543
(
2001
).
41.
M. B.
Airola
and
M. D.
Morse
,
J. Chem. Phys.
116
,
1313
(
2002
).
42.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
New York
,
1976
).
43.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
44.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. B
82
,
094116
(
2010
).
45.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Comput. Phys. Commun.
183
,
2063
(
2012
).
46.
See supplementary material at http://dx.doi.org/10.1063/1.4934798 for the optimized Cartesian coordinates of the six representative low energy structures of Pt55 cluster presented in Fig. 1, (I); the most stable structures of PtNclusters (N = 52–61) presented in Fig. 3, (II); the most stable structures of Pt57with D6h symmetry and its lowest energy core-shell isomer C9–S48 and its optimized Cartesian coordinates, (III), respectively.
47.
M.
Ji
,
X.
Gu
,
X.
Li
,
X. G.
Gong
,
J.
Li
, and
L. S.
Wang
,
Angew. Chem., Int. Ed.
44
,
7119
(
2005
).
48.
S. F.
Li
,
H.
Li
,
X.
Xue
,
Y.
Jia
,
Z. X.
Guo
,
Z.
Zhang
, and
X. G.
Gong
,
Phys. Rev. B
82
,
035443
(
2010
).
49.
D.
Tian
,
J.
Zhao
,
B.
Wang
, and
R. B.
King
,
J. Phys. Chem. A
111
,
411
(
2006
).
50.
H.
Hakkinen
and
M.
Manninen
,
Phys. Rev. Lett.
76
,
1599
(
1996
).

Supplementary Material

You do not currently have access to this content.