In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

1.
T.
Heinemann
,
K.
Palczynski
,
J.
Dzubiella
, and
S. H. L.
Klapp
,
J. Chem. Phys.
141
,
214110
(
2014
).
2.
P. A.
Golubkov
and
P.
Ren
,
J. Chem. Phys.
125
,
064103
(
2006
).
3.
M. A.
Bates
and
G. R.
Luckhurst
,
Liq. Cryst.
24
,
229
(
1998
).
4.
M. P.
Neal
and
A. J.
Parker
,
Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A
330
,
565
(
1999
).
5.
M. P.
Neal
,
M. D.
De Luca
, and
C. M.
Care
,
Mol. Simul.
14
,
245
(
1995
).
6.
M. P.
Neal
and
A. J.
Parker
,
Phys. Rev. E
63
,
011706
(
2000
).
7.
J. H.
Miller
,
W. G.
Mallard
, and
K. C.
Smyth
,
J. Phys. Chem.
88
,
4963
(
1984
).
8.
M.
Babadi
,
R.
Everaers
, and
M. R.
Ejtehadi
,
J. Chem. Phys.
124
,
174708
(
2006
).
9.
J. W.
Schroer
and
P. A.
Monson
,
J. Chem. Phys.
114
,
4124
(
2001
).
10.
J. H.
Lloyd-Williams
,
B.
Monserrat
,
D. D.
Vvedensky
, and
A.
Zangwill
,
Phys. Rev. B
85
,
161402
(
2012
).
11.
B. M.
Mognetti
,
L.
Yelash
,
P.
Virnau
,
W.
Paul
,
K.
Binder
,
M.
Müller
, and
L. G.
MacDowell
,
J. Chem. Phys.
128
,
104501
(
2008
).
12.
M.
Rubio
,
E.
Ortá
, and
J.
Sánchez-Marín
,
Int. J. Quantum Chem.
57
,
567
(
1996
).
13.
M.
Rapacioli
,
F.
Calvo
,
F.
Spiegelman
,
C.
Joblin
, and
D. J.
Wales
,
J. Phys. Chem. A
109
,
2487
(
2005
).
14.
I.
Fedorov
,
Y.
Zhuravlev
, and
V.
Berveno
,
Phys. Status Solidi B
249
,
1438
(
2012
).
15.
M.
Levitt
and
M. F.
Perutz
,
J. Mol. Biol.
201
,
751
(
1988
).
16.
D.
Andrienko
,
V.
Marcon
, and
K.
Kremer
,
J. Chem. Phys.
125
,
124902
(
2006
).
17.
B. J.
Berne
and
P.
Pechukas
,
J. Chem. Phys.
56
,
4213
(
1972
).
18.
J. G.
Gay
and
B. J.
Berne
,
J. Chem. Phys.
74
,
3316
(
1981
).
19.
V. N.
Kabadi
,
Ber. Bunsenges. Phys. Chem.
90
,
327
(
1986
).
20.
R.
Everaers
and
M. R.
Ejtehadi
,
Phys. Rev. E
67
,
041710
(
2003
).
21.
M. R.
Wilson
,
J. Chem. Phys.
107
,
8654
(
1997
).
22.
C.
McBride
and
M. R.
Wilson
,
Mol. Phys.
97
,
511
(
1999
).
23.
P. A.
Golubkov
,
J. C.
Wu
, and
P.
Ren
,
Phys. Chem. Chem. Phys.
10
,
2050
(
2008
).
24.
P.
Xu
,
H.
Shen
,
L.
Yang
,
Y.
Ding
,
B.
Li
,
Y.
Shao
,
Y.
Mao
, and
G.
Li
,
J. Mol. Model.
19
,
551
(
2013
).
25.
H.
Shen
,
Y.
Li
,
P.
Ren
,
D.
Zhang
, and
G.
Li
,
J. Chem. Theory Comput.
10
,
731
(
2014
).
26.
R. O.
Sokolovskii
and
E. E.
Burnell
,
J. Chem. Phys.
130
,
154507
(
2009
).
27.
A.
Gramada
and
P. E.
Bourne
,
Comput. Phys. Commun.
182
,
1455
(
2011
).
28.
R.
Anandakrishnan
,
C.
Baker
,
S.
Izadi
, and
A. V.
Onufriev
,
PLoS One
8
,
e67715
(
2013
).
29.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
de Vries
,
J. Phys. Chem. B
111
,
7812
(
2007
).
30.
G.
Voth
,
Coarse-Graining of Condensed Phase and Biomolecular Systems
(
CRC Press
,
2008
).
31.
A. L.
de Aguiar
,
A.
Saraiva-Souza
,
Z.
Bullard
,
D. W.
Maia
,
A. G.
Souza Filho
,
E. C.
Girao
, and
V.
Meunier
,
Phys. Chem. Chem. Phys.
16
,
3603
(
2014
).
32.
S.
Blumstengel
,
S.
Sadofev
, and
F.
Henneberger
,
New J. Phys.
10
,
065010
(
2008
).
33.
J.
Choi
,
W.
Lee
,
C.
Sakong
,
S. B.
Yuk
,
J. S.
Park
, and
J. P.
Kim
,
Dyes Pigm.
94
,
34
(
2012
).
34.
R.
Rieger
,
M.
Kastler
,
V.
Enkelmann
, and
K.
Müllen
,
Chem.–Eur. J.
14
,
6322
(
2008
).
35.
S.
Sanyal
,
A. K.
Manna
, and
S. K.
Pati
,
J. Phys. Chem. C
117
,
825
(
2013
).
36.
H.
Ruuska
and
T. A.
Pakkanen
,
J. Phys. Chem. B
105
,
9541
(
2001
).
37.
E. A.
Meyer
,
R. K.
Castellano
, and
F.
Diederich
,
Angew. Chem., Int. Ed.
42
,
1210
(
2003
).
38.
B.
Collignon
,
P. N. M.
Hoang
,
S.
Picaud
,
D.
Liotard
,
M.
Rayez
, and
J. C. J.
Rayez
,
J. Mol. Struct. THEOCHEM
772
,
1
(
2006
).
39.
B.
Schatschneider
,
S.
Monaco
,
J.-J.
Liang
, and
A.
Tkatchenko
,
J. Phys. Chem. C
118
,
19964
(
2014
).
40.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
,
J. Comput. Chem.
25
,
1157
(
2004
).
41.
K.
Palczynski
,
G.
Heimel
,
J.
Heyda
, and
J.
Dzubiella
,
Cryst. Growth Des.
14
,
3791
(
2014
).
42.
Y.
Olivier
,
L.
Muccioli
, and
C.
Zannoni
,
ChemPhysChem
15
,
1345
(
2014
).
43.
O. A.
von Lilienfeld
and
D.
Andrienko
,
J. Chem. Phys.
124
,
054307
(
2006
).
44.
O. I.
Obolensky
,
V. V.
Semenikhina
,
A. V.
Solov’yov
, and
W.
Greiner
,
Int. J. Quantum Chem.
107
,
1335
(
2007
).
45.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. C
112
,
4061
(
2008
).
46.
M.
Dijkstra
,
J. P.
Hansen
, and
P.
Madden
,
Phys. Rev. Lett.
75
,
2236
(
1995
).
47.
E.
Trizac
,
L.
Bocquet
,
R.
Agra
,
J.-J.
Weis
, and
M.
Aubouy
,
J. Phys.: Condens. Matter
14
,
9339
(
2002
).
48.
C. A.
Hunter
and
J. K. M.
Sanders
,
J. Am. Chem. Soc.
112
,
5525
(
1990
).
49.
S.
Tsuzuki
, in
Intermolecular Forces and Clusters I
,
Structure and Bonding
Vol.
115
, edited by
D.
Wales
(
Springer
,
Berlin, Heidelberg
,
2005
), pp.
149
193
.
50.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
,
M.
Mikami
, and
K.
Tanabe
,
J. Am. Chem. Soc.
124
,
104
(
2002
).
51.
J. M.
Robertson
 et al,
J. Chem. Soc.
1961
,
1280
.
52.
A.
Stone
,
Mol. Phys.
36
,
241
(
1978
).
53.
C.
Gray
and
K.
Gubbins
,
Theory of Molecular Fluids. Volume 1
,
Fundamentals International Series on Monographs on Chemistry
Vol.
9
(
Clarendon Press, Oxford University Press
,
New York
,
1984
).
54.
T.
Boublík
and
M.
Díaz Peña
,
Mol. Phys.
70
,
1115
(
1990
).
55.
B.
Thole
,
Chem. Phys.
59
,
341
(
1981
).
56.
T.
Taylor
,
M.
Schmollngruber
,
C.
Schröder
, and
O.
Steinhauser
,
J. Chem. Phys.
138
,
204119
(
2013
).
57.
A.
Morriss-Andrews
,
J.
Rottler
, and
S. S.
Plotkin
,
J. Chem. Phys.
132
,
035105
(
2010
).
58.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
59.
D.
Fincham
,
Mol. Simul.
11
,
79
(
1993
).
60.
J. M.
Robertson
and
J. G.
White
,
J. Chem. Soc.
1945
,
607
.
61.
W.
Smith
, CCP5 Newsletter No. 15, 15 (1998).
62.
T.
Echigo
,
M.
Kimata
, and
T.
Maruoka
,
Am. Mineral.
92
,
1262
(
2007
).
63.
J. M.
Robertson
and
J.
White
,
Nature
154
,
605
(
1944
).
64.
J. K.
Fawcett
and
J.
Trotter
,
Proc. R. Soc. A
289
,
366
(
1966
).
65.
J. C.
Sancho-García
,
A. J.
Pérez-Jiménez
, and
Y.
Olivier
,
J. Chem. Phys.
142
,
054702
(
2015
).
66.
M.
Schmidt
,
A.
Masson
, and
C.
Bréchignac
,
Int. J. Mass Spectrom.
252
,
173
(
2006
), Special Issue on Cluster Cooling.
67.
D.
Evans
and
R.
Watts
,
Mol. Phys.
31
,
83
(
1976
).
68.
E.
Jennings
,
W.
Montgomery
, and
P.
Lerch
,
J. Phys. Chem. B
114
,
15753
(
2010
).
You do not currently have access to this content.