We present a modelling framework, and basic model parameterization, for the study of DNA origami folding at the level of DNA domains. Our approach is explicitly kinetic and does not assume a specific folding pathway. The binding of each staple is associated with a free-energy change that depends on staple sequence, the possibility of coaxial stacking with neighbouring domains, and the entropic cost of constraining the scaffold by inserting staple crossovers. A rigorous thermodynamic model is difficult to implement as a result of the complex, multiply connected geometry of the scaffold: we present a solution to this problem for planar origami. Coaxial stacking of helices and entropic terms, particularly when loop closure exponents are taken to be larger than those for ideal chains, introduce interactions between staples. These cooperative interactions lead to the prediction of sharp assembly transitions with notable hysteresis that are consistent with experimental observations. We show that the model reproduces the experimentally observed consequences of reducing staple concentration, accelerated cooling, and absent staples. We also present a simpler methodology that gives consistent results and can be used to study a wider range of systems including non-planar origami.

1.
J.
Chen
and
N. C.
Seeman
,
Nature
350
,
631
(
1991
).
2.
R. P.
Goodman
,
I. A. T.
Schaap
,
C. F.
Tardin
,
C. M.
Erben
,
R. M.
Berry
,
C. F.
Schmidt
, and
A. J.
Turberfield
,
Science
310
,
1661
(
2005
).
3.
P. W. K.
Rothemund
,
Nature
440
,
297
(
2006
).
4.
J.
Zheng
,
J. J.
Birktoft
,
Y.
Chen
,
T.
Wang
,
R.
Sha
,
P. E.
Constantinou
,
S. L.
Ginell
,
C.
Mao
, and
N. C.
Seeman
,
Nature
461
,
74
(
2009
).
5.
S. M.
Douglas
,
H.
Dietz
,
T.
Liedl
,
B.
Högberg
,
F.
Graf
, and
W. M.
Shih
,
Nature
459
,
414
(
2009
).
6.
E. S.
Andersen
,
M.
Dong
,
M. M.
Nielsen
,
K.
Jahn
,
R.
Subramani
,
W.
Mamdouh
,
M. M.
Golas
,
B.
Sander
,
H.
Stark
,
C. L. P.
Oliveira
,
J. S.
Pedersen
,
V.
Birkedal
,
F.
Besenbacher
,
K. V.
Gothelf
, and
J.
Kjems
,
Nature
459
,
73
(
2009
).
7.
H.
Dietz
,
S. M.
Douglas
, and
W. M.
Shih
,
Science
325
,
725
(
2009
).
8.
D.
Han
,
S.
Pal
,
J.
Nangreave
,
Z.
Deng
,
Y.
Liu
, and
H.
Yan
,
Science
332
,
342
(
2011
).
9.
Y.
Ke
,
L. L.
Ong
,
W. M.
Shih
, and
P.
Yin
,
Science
338
,
1177
(
2012
).
10.
F.
Zhang
,
J.
Nangreave
,
Y.
Liu
, and
H.
Yan
,
J. Am. Chem. Soc.
136
,
11198
(
2014
).
11.
A.
Kuzyk
,
R.
Schreiber
,
Z.
Fan
,
G.
Pardatscher
,
E.-M.
Roller
,
A.
Högele
,
F. C.
Simmel
,
A. O.
Govorov
, and
T.
Liedl
,
Nature
483
,
311
(
2012
).
12.
P. K.
Dutta
,
R.
Varghese
,
J.
Nangreave
,
S.
Lin
,
H.
Yan
, and
Y.
Liu
,
J. Am. Chem. Soc.
133
,
11985
(
2011
).
13.
S. F. J.
Wickham
,
J.
Bath
,
Y.
Katsuda
,
M.
Endo
,
K.
Hidaka
,
H.
Sugiyama
, and
A. J.
Turberfield
,
Nat. Nanotechnol.
7
,
169
(
2012
).
14.
T. E.
Tomov
,
R.
Tsukanov
,
M.
Liber
,
R.
Masoud
,
N.
Plavner
, and
E.
Nir
,
J. Am. Chem. Soc.
135
,
11935
(
2013
).
15.
J.
Fu
,
M.
Liu
,
Y.
Liu
,
N. W.
Woodbury
, and
H.
Yan
,
J. Am. Chem. Soc.
134
,
5516
(
2012
).
16.
M.
Endo
,
K.
Tatsumi
,
K.
Terushima
,
Y.
Katsuda
,
K.
Hidaka
,
Y.
Harada
, and
H.
Sugiyama
,
Angew. Chem., Int. Ed.
124
,
8908
(
2012
).
17.
E.
Pfitzner
,
C.
Wachauf
,
F.
Kilchherr
,
B.
Pelz
,
W. M.
Shih
,
M.
Reif
, and
H.
Dietz
,
Angew. Chem., Int. Ed.
52
,
7766
(
2013
).
18.
N. D.
Derr
,
B. S.
Goodman
,
R.
Jungmann
,
A. E.
Lechziner
,
W. M.
Shih
, and
S. L.
Reck-Peterson
,
Science
338
,
662
(
2012
).
19.
S. M.
Douglas
,
I.
Bachelet
, and
G. M.
Church
,
Science
335
,
831
(
2012
).
20.
Y.
Amir
,
E.
Ben-Ishay
,
D.
Levner
,
S.
Ittah
,
A.
Abu-Horowitz
, and
I.
Bachalet
,
Nat. Nanotechnol.
9
,
353
(
2014
).
21.
H.
Chen
,
T.-W.
Weng
,
M. M.
Riccitelli
,
Y.
Cui
,
J.
Irudayaraj
, and
J. H.
Choi
,
J. Am. Chem. Soc.
136
,
6995
(
2014
).
22.
J.
Song
,
J.-M.
Arbona
,
Z.
Zhang
,
L.
Liu
,
E.
Xie
,
J.
Elezgaray
,
J.-P.
Aime
,
K. V.
Gothelf
,
F.
Besenbacher
, and
M.
Dong
,
J. Am. Chem. Soc.
134
,
9844
(
2012
).
23.
J.-P. J.
Sobczak
,
T. G.
Martin
,
T.
Gerling
, and
H.
Dietz
,
Science
338
,
1458
(
2012
).
24.
T. G.
Martin
and
H.
Dietz
,
Nat. Commun.
3
,
1103
(
2012
).
25.
Y.
Ke
,
G.
Bellot
,
N. V.
Voigt
,
E.
Fradkov
, and
W. M.
Shih
,
Chem. Sci.
3
,
2587
(
2012
).
26.
J.-M.
Arbona
,
J.-P.
Aimé
, and
J.
Elezgaray
,
J. Chem. Phys.
138
,
015105
(
2013
).
27.
X.
Wei
,
J.
Nangreave
,
S.
Jiang
,
H.
Yan
, and
Y.
Liu
,
J. Am. Chem. Soc.
135
,
6165
(
2013
).
28.
X.
Wei
,
J.
Nangreave
, and
Y.
Liu
,
Acc. Chem. Res.
47
,
1861
(
2014
).
29.
J.
SantaLucia
and
D.
Hicks
,
Annu. Rev. Biophys. Biomol. Struct.
33
,
415
(
2004
).
30.
A.
Reinhardt
and
D.
Frenkel
,
Phys. Rev. Lett.
112
,
238103
(
2014
).
31.
K. E.
Dunn
,
F.
Dannenberg
,
T. E.
Ouldridge
,
M.
Kwiatkowska
,
A. J.
Turberfield
, and
J.
Bath
,
Nature
525
,
82
(
2015
).
32.
A.
Phillips
and
L.
Cardelli
,
J. R. Soc., Interface
6
,
S419
(
2009
).
33.
Y.-J.
Chen
,
N.
Dalchau
,
N.
Srinivas
,
A.
Phillips
,
L.
Cardelli
,
D.
Solveichik
, and
G.
Seelig
,
Nat. Nanotechnol.
8
,
755
(
2013
).
34.
L. E.
Morrison
and
L. M.
Stols
,
Biochemistry
32
,
3095
(
1993
).
35.
Y.
Gao
,
L. K.
Wolf
, and
R. M.
Georgiadis
,
Nucleic Acids Res.
34
,
3370
(
2006
).
36.
J.
SantaLucia
,
Proc. Natl. Acad. Sci. U. S. A.
95
,
1460
(
1998
).
37.
H.
Jacobson
and
W. H.
Stockmayer
,
J. Chem. Phys.
18
,
1600
(
1950
).
38.
N.
Peyret
, “
Prediction of nucleic acid hybridization: Parameters and algorithms
,” Ph.D. thesis,
Wayne State University
,
2000
.
39.
D. V.
Pyshnyi
and
E. M.
Ivanova
,
Russ. Chem. Bull.
51
,
1145
(
2002
).
40.
M. J.
Lane
,
T.
Paner
,
I.
Kashin
,
B. D.
Faldasz
,
B.
Li
,
F. J.
Gallo
, and
A. S.
Benight
,
Nucleic Acids Res.
25
,
611
(
1997
).
41.
V. A.
Vasiliskov
,
D. V.
Prokopenko
, and
A. D.
Mirzabekov
,
Nucleic Acids Res.
29
,
2303
(
2001
).
42.
D. Y.
Zhang
and
E.
Winfree
,
J. Am. Chem. Soc.
131
,
17303
(
2009
).
43.
R.
Owczarzy
,
B. G.
Moreira
,
Y.
You
,
M. A.
Behlke
, and
J. A.
Walder
,
Biochemistry
47
,
5336
(
2008
).
44.
M.
Zuker
,
Nucleic Acids Res.
31
,
3406
(
2003
).
45.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
,
J. Phys.: Condens. Matter
22
,
104102
(
2010
).
46.
47.
S.
Chandrasekhar
,
Rev. Mod. Phys.
15
,
1
(
1943
).
48.
M. E.
Fisher
,
J. Chem. Phys.
45
,
1469
(
1966
).
49.
N. L.
Goddard
,
G.
Bonnet
,
O.
Krichevsky
, and
A.
Libchaber
,
Phys. Rev. Lett.
85
,
2400
(
2000
).
50.
W.
Saenger
,
Principles of Nucleic Acid Structure
(
Springer-Verlag
,
Berlin
,
1984
).
51.
S. B.
Smith
,
Y.
Cui
, and
C.
Bustamante
,
Science
271
,
795
(
1996
).
52.
C.
Rivetti
,
C.
Walker
, and
C.
Bustamante
,
J. Mol. Biol.
280
,
41
(
1998
).
53.
J. B.
Mills
,
E.
Vacano
, and
P. J.
Hagerman
,
J. Mol. Biol.
285
,
245
(
1999
).
54.
M. C.
Murphy
,
I.
Rasnik
,
W.
Chang
,
T. M.
Lohman
, and
T.
Ha
,
Biophys. J.
86
,
2530
(
2004
).
55.
H.
Chen
,
S. P.
Meisburger
,
S. A.
Pabit
,
J. L.
Sutton
,
W. W.
Webb
, and
L.
Pollack
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
799
(
2012
).
56.
D. T.
Gillespie
,
J. Comput. Phys.
22
,
403
(
1976
).
57.
E. W.
Dijkstra
,
Numer. Math.
1
,
269
(
1959
).
58.
D. V.
Pyshnyi
and
E. M.
Ivanova
,
Nucleosides, Nucleotides Nucleic Acids
23
,
1057
(
2004
).
You do not currently have access to this content.