The correct description of nondynamic correlation by electronic structure methods not belonging to the multireference family is a challenging issue. The transition of D2h to D4h symmetry in H4 molecule is among the most simple archetypal examples to illustrate the consequences of missing nondynamic correlation effects. The resurgence of interest in density matrix functional methods has brought several new methods including the family of Piris Natural Orbital Functionals (PNOF). In this work, we compare PNOF5 and PNOF6, which include nondynamic electron correlation effects to some extent, with other standard ab initio methods in the H4D4h/D2h potential energy surface (PES). Thus far, the wrongful behavior of single-reference methods at the D2hD4h transition of H4 has been attributed to wrong account of nondynamic correlation effects, whereas in geminal-based approaches, it has been assigned to a wrong coupling of spins and the localized nature of the orbitals. We will show that actually interpair nondynamic correlation is the key to a cusp-free qualitatively correct description of H4 PES. By introducing interpair nondynamic correlation, PNOF6 is shown to avoid cusps and provide the correct smooth PES features at distances close to the equilibrium, total and local spin properties along with the correct electron delocalization, as reflected by natural orbitals and multicenter delocalization indices.

1.
A. D.
Becke
,
J. Chem. Phys.
140
,
18A301
(
2014
).
2.
I. W.
Bulik
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Theory Comput.
11
,
3171
(
2015
).
3.
T. L.
Gilbert
,
Phys. Rev. B
12
,
2111
(
1975
).
4.
M.
Piris
, “
Natural orbital functional theory
,” in
Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules
,
Advances in Chemical Physics
Vol. 134 (John Wiley and Sons, 2007), pp. 385-427.
5.
K.
Pernal
and
K. J. H.
Giesbertz
,
Density-Functional Methods for Excited States
(
Springer
,
2015
), and references therein.
6.
E. V.
Ludeña
,
F. J.
Torres
, and
C.
Costa
,
J. Mod. Phys.
04
,
391
(
2013
).
7.
M.
Piris
,
Int. J. Quantum Chem.
113
,
620
(
2013
), and references therein.
8.
M.
Piris
and
J.
Ugalde
,
Int. J. Quantum Chem.
114
,
1169
(
2014
).
9.
M.
Piris
,
X.
Lopez
,
F.
Ruipérez
,
J. M.
Matxain
, and
J. M.
Ugalde
,
J. Chem. Phys.
134
,
164102
(
2011
).
10.
M.
Piris
,
J. Chem. Phys.
141
,
044107
(
2014
).
11.
J. M.
Matxain
,
M.
Piris
,
F.
Ruipérez
,
X.
Lopez
, and
J. M.
Ugalde
,
Phys. Chem. Chem. Phys.
13
,
20129
(
2011
).
12.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
137
,
054301
(
2012
).
13.
T. V.
Voorhis
and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
8873
(
2000
).
14.
K.
Jankowski
and
K.
Kowalski
,
J. Chem. Phys.
110
,
9345
(
1999
).
15.
K.
Jankowski
and
K.
Kowalski
,
J. Chem. Phys.
110
,
3714
(
1999
).
16.
K.
Kowalski
and
K.
Jankowski
,
Phys. Rev. Lett.
81
,
1195
(
1998
).
17.
K.
Kowalski
and
K.
Jankowski
,
Chem. Phys. Lett.
290
,
180
(
1998
).
18.
J.
Paldus
,
P.
Piecuch
,
L.
Pylypow
, and
B.
Jeziorski
,
Phys. Rev. A
47
,
2738
(
1993
).
19.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
136
,
054114
(
2012
).
20.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Theory Comput.
8
,
2653
(
2012
).
21.
A. M.
Sand
and
D. A.
Mazziotti
,
Comput. Theor. Chem.
1003
,
44
(
2013
).
22.
P.
Jeszenszki
,
V. A.
Rassolov
,
P. R.
Surján
, and
Á
Szabados
,
Mol. Phys.
113
,
249
(
2015
).
23.
V. A.
Rassolov
and
F.
Xu
,
J. Chem. Phys.
127
,
044104
(
2007
).
24.
E.
Ramos-Cordoba
,
E.
Matito
,
I.
Mayer
, and
P.
Salvador
,
J. Chem. Theory Comput.
8
,
1270
(
2012
).
25.
E.
Ramos-Cordoba
,
E.
Matito
,
P.
Salvador
, and
I.
Mayer
,
Phys. Chem. Chem. Phys.
14
,
15291
(
2012
).
26.
E.
Ramos-Cordoba
,
P.
Salvador
,
M.
Piris
, and
E.
Matito
,
J. Chem. Phys.
141
,
234101
(
2014
).
27.
M.
Piris
,
J. M.
Matxain
, and
X.
Lopez
,
J. Chem. Phys.
139
,
234109
(
2013
).
28.
X.
Lopez
,
M.
Piris
,
F.
Ruipérez
, and
J. M.
Ugalde
,
J. Phys. Chem. A
119
,
6981
(
2015
).
29.
M.
Piris
,
J. Math. Chem.
25
,
47
(
1999
).
30.
M.
Piris
,
Int. J. Quantum Chem.
106
,
1093
(
2006
).
31.
K.
Pernal
,
Comput. Theor. Chem.
1003
,
127
(
2013
).
32.
M.
Piris
,
J. Chem. Phys.
139
,
064111
(
2013
).
33.
E.
Ramos-Cordoba
and
P.
Salvador
,
J. Chem. Theory Comput.
10
,
634
(
2014
).
34.
E.
Ramos-Cordoba
and
P.
Salvador
,
Phys. Chem. Chem. Phys.
16
,
9565
(
2014
).
35.
M.
Giambiagi
,
M.
Giambiagi
, and
K.
Mundim
,
Struct. Chem.
1
,
423
(
1990
).
36.
J.
Cioslowski
,
E.
Matito
, and
M.
Solà
,
J. Phys. Chem. A
111
,
6521
(
2007
).
37.
F.
Feixas
,
M.
Solà
,
J. M.
Barroso
,
J. M.
Ugalde
, and
E.
Matito
,
J. Chem. Theory Comput.
10
,
3055
(
2014
).
38.
F.
Feixas
,
E.
Matito
,
J.
Poater
, and
M.
Solà
,
J. Phys. Chem. A
115
,
13104
(
2011
).
39.
M.
Giambiagi
,
M. S. d.
Giambiagi
,
C. D.
dos Santos Silva
, and
A. P.
da Figuereido
,
Phys. Chem. Chem. Phys.
2
,
3381
(
2000
).
40.
F.
Feixas
,
E.
Matito
,
J.
Poater
, and
M.
Solà
,
Chem. Soc. Rev.
44
,
6434
(
2015
).
41.
M. J.
Frisch
 et al, gaussian 03, Revision C. 02, Gaussian, Inc., Pittsburgh, PA, 2003.
42.
P. J.
Knowles
and
N. C.
Handy
,
Chem. Phys. Lett.
111
,
315
(
1984
).
43.
P. J.
Knowles
and
N. C.
Handy
,
Comput. Phys. Commun.
54
,
75
(
1989
).
44.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
45.
M. S.
Gordon
and
M. W.
Schmidt
, in
Theory and Applications of Computational Chemistry
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
2005
), pp.
1167
1189
.
46.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
47.
E.
Matito
and
F.
Feixas
, “DMN program,” University of Girona (Spain) and University of Szczecin (Poland), 2009.
48.
P.
Salvador
and
E.
Ramos-Cordoba
, “Apost-3d program,” Universitat de Girona (Spain), 2012.
49.
P.
Salvador
and
E.
Ramos-Cordoba
,
J. Chem. Phys.
139
,
071103
(
2013
).
You do not currently have access to this content.