Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles — embedded wave functions are only auxiliary objects used to obtain stationary densities — working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematical structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities.

1.
T. A.
Wesolowski
and
A.
Warshel
, “
Frozen density functional approach for ab initio calculations of solvated molecules
,”
J. Phys. Chem.
97
(
30
),
8050
8053
(
1993
).
2.
T. A.
Wesolowski
, “
Embedding a multideterminantal wave function in an orbital-free environment
,”
Phys. Rev. A
77
,
012504
(
2008
).
3.
K.
Pernal
and
T. A.
Wesolowski
, “
Orbital-free effective embedding potential: Density-matrix functional theory case
,”
Int. J. Quantum Chem.
109
,
2520
2525
(
2009
).
4.
J. P.
Perdew
and
M.
Levy
, “
Extrema of the density functional for the energy—Excited-states from the ground-state theory
,”
Phys. Rev. B
31
(
10
),
6264
6272
(
1985
).
5.
Y. G.
Khait
and
M. R.
Hoffmann
, “
Embedding theory for excited states
,”
J. Chem. Phys.
133
(
4
),
044107
(
2010
).
6.
T. A.
Wesolowski
, “
Hydrogen-bonding-induced shifts of the excitation energies in nucleic acid bases: An interplay between electrostatic and electron density overlap effects
,”
J. Am. Chem. Soc.
126
(
37
),
11444
11445
(
2004
).
7.
T. A.
Wesolowski
, “
Embedding potentials for excited states of embedded species
,”
J. Chem. Phys.
140
(
18
),
18A530
(
2014
).
8.
L. I.
Bendavid
and
E. A.
Carter
,
Status in Calculating Electronic Excited States in Transition Metal Oxides from First Principles
(
Springer
,
2014
).
9.
T. A.
Wesolowski
,
S.
Shedge
, and
X.
Zhou
, “
Frozen-density embedding strategy for multilevel simulations of electronic structure
,”
Chem. Rev.
115
(
12
),
5891
(
2015
).
10.
C.
Daday
,
C.
König
,
J.
Neugebauer
, and
C.
Filippi
, “
Wavefunction in density functional theory embedding for excited states: Which wavefunctions, which densities?
,”
ChemPhysChem
15
,
3205
3217
(
2014
).
11.
C.
Daday
,
C.
König
,
O.
Valsson
,
J.
Neugebauer
, and
C.
Filippi
, “
State-specific embedding potentials for excitation-energy calculations
,”
J. Chem. Theory Comput.
9
(
5
),
2355
2367
(
2013
).
12.
A. S. P.
Gomes
,
C. R.
Jacob
, and
L.
Visscher
, “
Calculation of local excitations in large systems by embedding wave-function theory in density-functional theory
,”
Phys. Chem. Chem. Phys.
10
(
35
),
5353
5362
(
2008
).
13.
S.
Höfener
, “
Coupled-cluster frozen-density embedding using resolution of the identity methods
,”
J. Comput. Chem.
35
(
23
),
1716
1724
(
2014
).
14.
O.
Roncero
,
A.
Aguado
,
F. A.
Batista-Romero
,
M. I.
Bernal-Uruchurtu
, and
R.
Hernández-Lamoneda
, “
Density-difference-driven optimized embedding potential method to study the spectroscopy of Br2 in water clusters
,”
J. Chem. Theory Comput.
11
,
1155
1164
(
2015
).
15.
D.
Lahav
and
T.
Kluner
, “
A self-consistent density based embedding scheme applied to the adsorption of CO on Pd(111)
,”
J. Phys.: Condens. Matter
19
,
226001
(
2007
).
16.
T.
Dresselhaus
,
J.
Neugebauer
,
S.
Knecht
,
S.
Keller
,
Y.
Ma
, and
M.
Reiher
, “
Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment
,”
J. Chem. Phys.
142
,
044111
(
2014
).
17.
N.
Govind
,
Y. A.
Wang
,
A. J. R.
da Silva
, and
E. A.
Carter
, “
Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment
,”
Chem. Phys. Lett.
295
,
129
134
(
1998
).
18.
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
, “
Electronic-structure calculations by first-principles density-based embedding of explicitly correlated systems
,”
J. Chem. Phys.
110
(
16
),
7677
7688
(
1999
).
19.
M.
Svensson
,
S.
Humbel
,
R. D. J.
Froese
,
T.
Matsubara
,
S.
Sieber
, and
K.
Morokuma
, “
Oniom: A multilayered integrated MO+MM method for geometry optimizations and single point energy predictions. A test for diels-alder reactions and Pt(P(t − Bu)3)2 + h2 oxidative addition
,”
J. Phys. Chem.
100
(
50
),
19357
19363
(
1996
).
20.
T. A.
Wesolowski
, “
One-electron equations for embedded electron density: Challenge for theory and practical payoffs in multi-level modelling of soft condensed matter
,” in
Computational Chemistry: Reviews of Current Trends
(
World Scientific
,
2006
), Vol.
X
, pp.
1
82
.
21.
J.
Neugebauer
, “
Chromophore-specific theoretical spectroscopy: From subsystem density functional theory to mode-specific vibrational spectroscopy
,”
Phys. Rep.
489
(
1–3
),
1
87
(
2010
).
22.
C. R.
Jacob
and
J.
Neugebauer
, “
Subsystem density-functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
(
4
),
325
362
(
2014
).
23.
S.
Höfener
,
A. S. P.
Gomes
, and
L.
Visscher
, “
Solvatochromic shifts from coupled-cluster theory embedded in density functional theory
,”
J. Chem. Phys.
139
(
10
),
104106
(
2013
).
24.
T.
Helgaker
,
J.
Olsen
, and
P.
Jorgensen
,
Molecular Electronic-Structure Theory
(
Wiley
,
2013
).
25.
B. J.
Zhou
,
Y. A.
Wang
, and
E. A.
Carter
, “
Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment
,”
Phys. Rev. B
69
(
12
),
125109
(
2004
).
26.
O.
Roncero
,
M. P.
de Lara-Castells
,
P.
Villarreal
,
F.
Flores
,
J.
Ortega
,
M.
Paniagua
, and
A.
Aguado
, “
An inversion technique for the calculation of embedding potentials
,”
J. Chem. Phys.
129
(
18
),
184104
(
2008
).
27.
J. D.
Goodpaster
,
N.
Ananth
,
F. R.
Manby
, and
T. F.
Miller
III
, “
Exact nonadditive kinetic potentials for embedded density functional theory
,”
J. Chem. Phys.
133
(
8
),
084103
(
2010
).
28.
S.
Fux
,
C. R.
Jacob
,
J.
Neugebauer
,
L.
Visscher
, and
M.
Reiher
, “
Accurate frozen-density embedding potentials as a first step towards a subsystem description of covalent bonds
,”
J. Chem. Phys.
132
(
16
),
164101
(
2010
).
29.
J.-D.
Chai
and
J. D.
Weeks
, “
Orbital-free density functional theory: Kinetic potentials and ab initio local pseudopotentials
,”
Phys. Rev. B
75
,
205122
(
2007
).
30.
D. G
Artiukhin
,
C. R.
Jacob
, and
J.
Neugebauer
, “
Excitation energies from frozen-density embedding with accurate embedding potentials
,”
J. Chem. Phys.
142
,
234101
(
2015
).
31.
M.
Dulak
,
J. W.
Kaminski
, and
T. A.
Wesolowski
, “
Linearized orbital-free embedding potential in self-consistent calculations
,”
Int. J. Quantum Chem.
109
(
9
),
1886
1897
(
2009
).
32.
B.
Mennucci
and
J.
Tomasi
, “
Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries
,”
J. Chem. Phys.
106
(
12
),
5151
5158
(
1997
).
33.
A.
Klamt
and
G.
Schüürmann
, “
Cosmo: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
,”
J. Chem. Soc., Perkin Trans. 2
2
(
5
),
799
805
(
1993
).
34.
T. D.
Poulsen
,
P. R.
Ogilby
, and
K. V.
Mikkelsen
, “
Linear response properties for solvated molecules described by a combined multiconfigurational self-consistent-field/molecular mechanics model
,”
J. Chem. Phys.
116
(
9
),
3730
3738
(
2002
).
35.
L.
Jensen
,
P. Th.
van Duijnen
, and
J. G.
Snijders
, “
A discrete solvent reaction field model within density functional theory
,”
J. Chem. Phys.
118
(
2
),
514
521
(
2003
).
36.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
, “
Linear response functions for coupled cluster/molecular mechanics including polarization interactions
,”
J. Chem. Phys.
118
(
4
),
1620
1633
(
2003
).
37.
M.
Humbert-Droz
,
X.
Zhou
,
S. V.
Shedge
, and
T. A.
Wesolowski
, “
How to choose the frozen density in frozen-density embedding theory-based numerical simulations of local excitations?
,”
Theor. Chem. Acc.
133
(
1
),
1
20
(
2014
).
38.
A.
Savin
and
T. A.
Wesolowski
, “
Orbital-free embedding effective potential in analytically solvable cases
,”
Prog. Theor. Chem. Phys.
19
,
327
339
(
2009
).
39.
P.
de Silva
and
T. A.
Wesolowski
, “
Exact non-additive kinetic potentials in realistic chemical systems
,”
J. Chem. Phys.
137
(
9
),
094110
(
2012
).
40.
D. K.
Kanan
,
S.
Sharifzadeh
, and
E. A.
Carter
, “
Quantum mechanical modeling of electronic excitations in metal oxides: Magnesia as a prototype
,”
Chem. Phys. Lett.
519
,
18
24
(
2012
).
41.
M.
Levy
and
J. P.
Perdew
, “
The constrained search formulation of density functional theory
,” in
Density Functional Methods In Physics
,
NATO ASI Series B
Vol.
123
(
Springer
,
1985
), pp.
11
30
.
42.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
(
4A
),
A1133
A1138
(
1965
).
43.
E. H.
Lieb
, “
Density functionals for coulomb-systems
,”
Int. J. Quantum Chem.
24
(
3
),
243
277
(
1983
).
44.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry. Introduction to Advanced Electronic Structure Theory
(
McGraw-Hill
,
1982
).
45.
F.
Aquilante
and
T. A.
Wesolowski
, “
Self-consistency in frozen-density embedding theory based calculations
,”
J. Chem. Phys.
135
(
8
),
084120
(
2011
).
46.
M. E.
Casida
, “Time-dependent density-functional response theory for molecules,” inRecent Advances in Computational Chemistry edited by D. P. Chong (World Scientific, Singapore, 1995), Vol. 1. Pt. 1, p. 155.
47.
J. M.
Garcia Lastra
,
J. W.
Kaminski
, and
T. A.
Wesolowski
, “
Orbital-free effective embedding potential at nuclear cusps
,”
J. Chem. Phys.
129
,
074107
(
2008
).
48.
F.
Aquilante
,
L.
de Vico
,
N.
Ferré
,
G.
Ghigo
,
P.-Å.
Malmqvist
,
P.
Neogrády
,
T. B.
Pedersen
,
M.
Pitoňák
,
M.
Reiher
,
B. O.
Roos
,
L.
Serrano-Andrés
,
M.
Urban
,
V.
Veryazov
, and
R.
Lindh
, “
MOLCAS 7: The next generation
,”
J. Comput. Chem.
31
(
1
),
224
247
(
2010
).
49.
F.
Aquilante
,
T. B.
Pedersen
,
V.
Veryazov
, and
R.
Lindh
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
143
(
2013
).
50.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
51.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminium through argon
,”
J. Chem. Phys.
98
,
1358
(
1993
).
52.
F.
Aquilante
,
L.
Boman
,
J.
Boström
,
H.
Koch
,
T. B.
Pedersen
,
A.
Sanchez de Merás
, and
R.
Lindh
, “
Cholesky decomposition techniques in electronic structure theory
,” in
Challenges and Advances in Computational Chemistry and Physics
, edited by
M. G.
Papadopoulos
,
R.
Zalesny
,
P. G.
Mezey
, and
J.
Leszczynski
(
Springer
,
2011
), Vol.
13
, pp.
301
344
.
53.
J.
Boström
,
M.
Pitonak
,
F.
Aquilante
,
P.
Neogrady
,
T. B.
Pedersen
, and
R.
Lindh
, “
Coupled cluster and møller–plesset perturbation theory calculations of noncovalent intermolecular interactions using density fitting with auxiliary basis sets from cholesky decompositions
,”
J. Chem. Theory Comput.
8
(
6
),
1921
1928
(
2012
).
54.
J.
Boström
,
M. G.
Delcey
,
F.
Aquilante
,
L.
Serrano-Andres
,
T. B.
Pedersen
, and
R.
Lindh
, “
Calibration of cholesky auxiliary basis sets for multiconfigurational perturbation theory calculations of excitation energies
,”
J. Chem. Theory Comput.
6
,
747
754
(
2010
).
55.
M. G.
Delcey
,
L.
Freitag
,
T. B.
Pedersen
,
F.
Aquilante
,
R.
Lindh
, and
L.
Gonzalez
, “
Analytical gradients of complete active space self-consistent field energies using cholesky decomposition: Geometry optimization and spin-state energetics of a ruthenium nitrosyl complex
,”
J. Chem. Phys.
140
(
17
),
174103
(
2014
).
56.
J.
Boström
,
V.
Veryazov
,
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
, “
Analytical gradients of the second-order Møller–Plesset energy using cholesky decompositions
,”
Int. J. Quantum Chem.
114
(
5
),
321
327
(
2014
).
57.
J.
Boström
,
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
, “
Analytical gradients of Hartree–Fock exchange with density fitting approximations
,”
J. Chem. Theory Comput.
9
(
1
),
204
212
(
2012
).
58.
L. H.
Thomas
, “
The calculation of atomic fields
,”
Math. Proc. Cambridge Philos. Soc.
23
,
542
(
1927
).
59.
E.
Fermi
, “
Un metodo statistico per la determinazione de alcune prioprietà dell’atomo
,”
Rend. Accad. Naz. Lincei
6
,
602
(
1927
).
60.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
,
9982
(
1996
).
61.
A.
DeFusco
,
J.
Ivanic
,
M. W.
Schmidt
, and
M. S.
Gordon
, “
Solvent-induced shifts in electronic spectra of uracil
,”
J. Phys. Chem. A
115
(
18
),
4574
4582
(
2011
).
62.
M. J. G.
Peach
,
P.
Benfield
,
T.
Helgaker
, and
D. J.
Tozer
, “
Excitation energies in density functional theory: An evaluation and a diagnostic test
,”
J. Chem. Phys.
128
,
044118
(
2008
).
63.
L.
Serrano-Andrés
and
M. P.
Fülscher
, “
Theoretical study of the electronic spectroscopy of peptides. III. Charge-transfer transitions in polypeptides
,”
J. Am. Chem. Soc.
120
(
42
),
10912
10920
(
1998
).
64.
M. I.
Bernal-Uruchurtu
,
R.
Hernández-Lamoneda
, and
K. C.
Janda
, “
On the unusual properties of halogen bonds: A detailed ab initio study of X2-(H2O)1−5 clusters (X = Cl and Br)
,”
J. Phys. Chem. A
113
(
19
),
5496
5505
(
2009
).
65.
T.
Dresselhaus
and
J.
Neugebauer
, “
Part and whole in wavefunction/DFT embedding
,”
Theor. Chem. Acc.
134
(
8
),
1
15
(
2015
).
66.
M.
Dulak
,
R.
Kevorkyants
,
F.
Tran
, and
T. A.
Wesolowski
, “
One-electron equations for embedded electron density and their applications to study electronic structure of atoms and molecules in condensed phase
,”
Chimia
59
(
7-8
),
488
492
(
2005
).
67.
See supplementary material at http://dx.doi.org/10.1063/1.4933372 for Cartesian coordinates of all systems used in the present work, wave function overlap integrals and density differences of self-consistent ground state and other self-consistent states of each system.

Supplementary Material

You do not currently have access to this content.