Axial diffusion in a two-dimensional channel of smoothly varying geometry can be approximately described as one-dimensional diffusion in the entropy potential with position-dependent effective diffusivity by means of the modified Fick-Jacobs equation. In this paper, Brownian dynamics simulations are used to study the range of applicability of such a description, as well as the accuracy of the expressions for the effective diffusivity proposed by different researchers.
REFERENCES
1.
2.
R.
Zwanzig
, J. Phys. Chem.
96
, 3926
(1992
).3.
D.
Reguera
and J. M.
Rubi
, Phys. Rev. E
64
, 061106
(2001
).4.
P.
Kalinay
and J. K.
Percus
, J. Chem. Phys.
122
, 204701
(2005
).5.
P.
Kalinay
and J. K.
Percus
, Phys. Rev. E
72
, 061203
(2005
).6.
P.
Kalinay
and J. K.
Percus
, Phys. Rev. E
74
, 041203
(2006
).7.
P.
Kalinay
and J. K.
Percus
, J. Stat. Phys.
123
, 1059
(2006
).8.
P.
Kalinay
and J. K.
Percus
, Phys. Rev. E
78
, 021103
(2008
).9.
R. M.
Bradley
, Phys. Rev. E
80
, 061142
(2009
).10.
S.
Martens
, G.
Schmid
, L.
Schimansky-Geier
, and P.
Hanggi
, Phys. Rev. E
83
, 051135
(2011
).11.
E.
Yariv
and K. D.
Dorfman
, Phys. Fluids
19
, 037101
(2007
).12.
A.
Berezhkovskii
and A.
Szabo
, J. Chem. Phys.
135
, 074108
(2011
).13.
A. A.
Garcia-Chung
, G.
Chacon-Acosta
, and L.
Dagdug
, J. Chem. Phys.
142
, 064105
(2015
).14.
L.
Dagdug
and I.
Pineda
, J. Chem. Phys.
137
, 024107
(2012
).15.
A. M.
Berezhkovskii
, M. A.
Pustovoit
, and S. M.
Bezrukov
, J. Chem. Phys.
126
, 134706
(2007
).16.
L.
Dagdug
, M.-V.
Vazquez
, A. M.
Berezhkovskii
, and S. M.
Bezrukov
, J. Chem. Phys.
133
, 034707
(2010
).17.
A. M.
Beredzhkovskii
and S. M.
Bezrukov
, Eur. Phys. J.: Spec. Top.
223
, 3063
(2014
).18.
S.
Redner
, A Guide to First-Passage Processes
(Cambridge University Press
, Cambridge
, 2001
).19.
N. G.
Van Kampen
, Stochastic Processes in Physics and Chemistry
(Elsevier
, Amsterdam
, 2007
).© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.