Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

1.
S. R.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
Dover
,
New York
,
1984
).
2.
P.
Ván
and
T.
Fülöp
, “
Universality in heat conduction theory: Weakly nonlocal thermodynamics
,”
Ann. Phys. (Berlin, Ger.)
524
,
470
478
(
2012
).
3.
K. K.
Tamma
and
X.
Zhou
, “
Macroscale and microscale thermal transport and thermo-mechanical interactions: Some noteworthy perspectives
,”
J. Therm. Stresses
21
,
405
449
(
1998
).
4.
D. Y.
Tzou
,
Macro-to-Microscale Heat Transfer. The Lagging Behaviour
(
Taylor & Francis
,
New York
,
1997
).
5.
D. D.
Joseph
and
L.
Preziosi
, “
Heat waves
,”
Rev. Mod. Phys.
61
,
41
73
(
1989
).
6.
J. C.
Maxwell
,
Philos. Trans. R. Soc. London
157
,
49
(
1867
).
7.
C.
Cattaneo
,
Atti Semin. Mat. Fis. Univ. Modena
3
,
83
101
(
1948
).
8.
M. P.
Vernotte
, “
Les paradoxes de la théorie continue de l’équation de la chaleur
,”
C. R. Hebd. Seances Acad. Sci.
246
,
3154
3155
(
1958
).
9.
J.
Meixner
,
Rheol. Acta
12
,
465
467
(
1973
).
10.
D.
Jou
,
J.
Casas-Vázquez
, and
G.
Lebon
,
Extended Irreversible Thermodynamics
, 4th ed. (
Springer
,
New York, Dordrecht, Heidelberg, London
,
2010
).
11.
G.
Lebon
and
D.
Jou
, “
Early history of extended irreversible thermodynamics (1953-1983): An exploration beyond local equilibrium and classical transport theory
,”
Eur. Phys. J. H
40
,
205
240
(
2015
).
12.
K. S.
Glavatskiy
, “
Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics
,”
J. Chem. Phys.
142
,
204106
(
2015
).
13.
J.
Schechter
,
The Variational Method in Engineering
(
McGraw-Hill
,
New York
,
1967
).
14.
T.
Matolsci
,
P.
Ván
, and
J.
Verhás
, “
Fundamental problems of variational principles: Objectivity, symmetries and construction
,” in
Variational and Extremum Principles in Macroscopic Systems
(
Elsevier
,
Amsterdam
,
2005
), Chap. III.
15.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics
(
McGraw-Hill
,
New York
,
1953
).
16.
S.
Sieniutycz
, “
Variational approach to extended irreversible thermodynamics of heat and mass transfer
,”
J. Non-Equilib. Thermodyn.
9
,
61
70
(
1984
).
You do not currently have access to this content.