We analyze the translocation of a charged particle across an α-Hemolysin (αHL) pore in the framework of a driven diffusion over an extended energy barrier generated by the electrical charges of the αHL. A one-dimensional electrostatic potential is extracted from the full 3D solution of the Poisson’s equation. We characterize the particle transport under the action of a constant forcing by studying the statistics of the translocation time. We derive an analytical expression of translocation time average that compares well with the results from Brownian dynamic simulations of driven particles over the electrostatic potential. Moreover, we show that the translocation time distributions can be perfectly described by a simple theory which replaces the true barrier by an equivalent structureless square barrier. Remarkably, our approach maintains its accuracy also for low-applied voltage regimes where the usual inverse-Gaussian approximation fails. Finally, we discuss how the comparison between the simulated time distributions and their theoretical prediction results to be greatly simplified when using the notion of the empirical Laplace transform technique.

1.
S.
Matysiak
,
A.
Montesi
,
M.
Pasquali
,
A. B.
Kolomeisky
, and
C.
Clementi
,
Phys. Rev. Lett.
96
,
118103
(
2006
).
2.
C.-T. A.
Wong
and
M.
Muthukumar
,
J. Chem. Phys.
128
,
154903
(
2008
).
3.
L.
Huang
and
D.
Makarov
,
J. Chem. Phys.
129
,
121107
(
2008
).
4.
M.
Chinappi
,
F.
Cecconi
, and
C. M.
Casciola
,
Philos. Mag.
91
,
2034
(
2011
).
5.
M.
Bacci
,
M.
Chinappi
,
C. M.
Casciola
, and
F.
Cecconi
,
J. Phys. Chem. B
116
,
4255
(
2012
).
6.
A. M.
Berezhkovskii
,
M. A.
Pustovoit
, and
S. M.
Bezrukov
,
J. Chem. Phys.
116
,
9952
(
2002
).
7.
M.
Muthukumar
,
Polymer Translocation
(
Taylor & Francis US
,
2011
).
8.
L.
Movileanu
,
J. P.
Schmittschmitt
,
J. M.
Scholtz
, and
H.
Bayley
,
Biophys. J.
89
,
1030
(
2005
).
9.
C.-T. A.
Wong
and
M.
Muthukumar
,
J. Chem. Phys.
133
,
045101
(
2010
).
10.
M.
Muthukumar
and
C. Y.
Kong
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
5273
(
2006
).
11.
D.
Panja
,
G. T.
Barkema
, and
A. B.
Kolomeisky
,
J. Phys.: Condens. Matter
25
,
413101
(
2013
).
12.
J. L.
Trick
,
E. J.
Wallace
,
H.
Bayley
, and
M. S.
Sansom
,
ACS Nano
8
,
11268
(
2014
).
13.
L.
Mereuta
,
M.
Roy
,
A.
Asandei
,
J. K.
Lee
,
Y.
Park
,
I.
Andricioaei
, and
T.
Luchian
,
Sci. Rep.
4
,
3885
(
2014
).
14.
D. K.
Lubensky
and
D. R.
Nelson
,
Biophys. J.
77
,
1824
(
1999
).
15.
A.
Ammenti
,
F.
Cecconi
,
U.
Marini Bettolo Marconi
, and
A.
Vulpiani
,
J. Phys. Chem. B
113
,
10348
(
2009
).
16.
A.
Pelizzola
and
M.
Zamparo
,
Europhys. Lett.
102
,
10001
(
2013
).
17.
W.
Im
and
B.
Roux
,
J. Mol. Biol.
322
,
851
(
2002
).
18.
M.
Bacci
,
M.
Chinappi
,
C. M.
Casciola
, and
F.
Cecconi
,
Phys. Rev. E
88
,
022712
(
2013
).
19.
C. W.
Gardiner
,
Springer Ser. Synergetics
13
,
2963
2968
(
1985
).
20.
L.
Song
,
M. R.
Hobaugh
,
C.
Shustak
,
S.
Cheley
,
H.
Bayley
,
J. E.
Gouaux
 et al,
Science
274
,
1859
(
1996
).
21.
C.
Madampage
,
O.
Tavassoly
,
C.
Christensen
,
M.
Kumari
, and
J.
Lee
,
Prion
6
,
110
(
2012
).
22.
A. G.
Oukhaled
,
A. L.
Biance
,
J.
Pelta
,
L.
Auvray
, and
L.
Bacri
,
Phys. Rev. Lett.
108
,
88104
(
2012
).
23.
A. G.
Oukhaled
,
J.
Mathe
,
A.
Biance
,
L.
Bacri
,
J.
Betton
,
D.
Lairez
,
J.
Pelta
, and
L.
Auvray
,
Phys. Rev. Lett.
98
,
158101
(
2007
).
24.
J.
Nivala
,
D. B.
Marks
, and
M.
Akeson
,
Nat. Biotechnol.
31
,
247
(
2013
).
25.
D.
Rodriguez-Larrea
and
H.
Bayley
,
Nat. Nanotechnol.
8
,
288
(
2013
).
26.
A.
Asandei
,
M.
Chinappi
,
J.-k.
Lee
,
C. H.
Seo
,
L.
Mereuta
,
Y.
Park
, and
T.
Luchian
,
Sci. Rep.
5
,
10419
(
2015
).
27.
D.
Di Marino
,
E. L.
Bonome
,
A.
Tramontano
, and
M.
Chinappi
,
J. Phys. Chem. Lett.
6
,
2963
2968
(
2015
).
28.
A.
Asandei
,
M.
Chinappi
,
H.-K.
Kang
,
C. H.
Seo
,
L.
Mereuta
,
Y.
Park
, and
T.
Luchian
,
ACS Appl. Mater. Interfaces
7
,
16706
16714
(
2015
).
29.
N.
Henze
and
B.
Klar
,
Ann. Inst. Stat. Math.
54
,
425
(
2002
).
30.
T. J.
Dolinsky
,
P.
Czodrowski
,
H.
Li
,
J. E.
Nielsen
,
J. H.
Jensen
,
G.
Klebe
, and
N. A.
Baker
,
Nucleic Acids Res.
35
,
W522
(
2007
).
31.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
,
J. Comput. Chem.
21
,
1049
(
2000
).
32.
M.
Holst
,
Adv. Comput. Math.
15
,
139
(
2001
).
33.
A.
Manzin
,
D.
Ansalone
, and
O.
Bottauscio
,
IEEE Trans. Magn.
47
,
1382
(
2011
).
34.
A.
Manzin
,
O.
Bottauscio
, and
D.
Ansalone
,
J. Comput. Chem.
32
,
3105
(
2011
).
35.
N. A.
Simakov
and
M. G.
Kurnikova
,
J. Phys. Chem. B
114
,
15180
(
2010
).
36.
D. Y.
Ling
and
X. S.
Ling
,
J. Phys.: Condens. Matter
25
,
375102
(
2013
).
37.
R. L.
Honeycutt
,
Phys. Rev. A
45
,
600
(
1992
).
38.
O. K.
Dudko
,
G.
Hummer
, and
A.
Szabo
,
Phys. Rev. Lett.
96
,
108101
(
2006
).
39.
M.
Evstigneev
and
P.
Reimann
,
J. Phys.: Condens. Matter
27
,
125004
(
2015
).
40.
C. A.
Plata
,
F.
Cecconi
,
M.
Chinappi
, and
A.
Prados
,
J. Stat. Mech.: Theory Exp.
2015
,
P08003
.
41.
A.
Talbot
,
IMA J. Appl. Math.
23
,
97
(
1979
).
42.
J.
Abate
and
P.
Valkó
,
Int. J. Numer. Methods Eng.
60
,
979
(
2004
).
43.
A.
Berezhkovskii
and
A.
Szabo
,
J. Chem. Phys.
135
,
074108
(
2011
).
44.
H.
Risken
,
The Fokker-Planck Equation: Methods of Solution and Applications
,
Lecture Notes in Mathematics
(
Springer
,
1996
).
45.
V.
Berdichevsky
and
M.
Gitterman
,
J. Phys. A: Math. Gen.
29
,
1567
(
1996
).
47.
D.
Duffy
,
Transform Methods for Solving Partial Differential Equations
, 2nd ed. (
CRC Press
,
2004
), p.
77
.
48.
G. B.
Arfken
and
H. J.
Weber
,
Mathematical Methods For Physicists
, International Student Edition (
Academic Press
,
2005
).
You do not currently have access to this content.