We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.

1.
D. F.
Sanders
,
Z. P.
Smith
,
R.
Guo
,
L. M.
Robeson
,
J. E.
Mcgrath
,
D. R.
Paul
, and
B. D.
Freeman
,
Polymer
54
,
4729
(
2013
).
2.
B. J.
Blaiszik
,
S. L. B.
Kramer
,
S. C.
Olugebefola
,
J. S.
Moore
,
N. R.
Sottos
, and
S. R.
White
,
Annu. Rev. Mater. Res.
40
,
179
(
2010
).
3.
G. M.
Geise
,
H.-S.
Lee
,
D. J.
Miller
,
B. D.
Freeman
,
J. E.
Mcgrath
, and
D. R.
Paul
,
J. Polym. Sci., Part B: Polym. Phys.
48
,
1685
(
2010
).
4.
J. N.
Ryan
and
M.
Elimelech
,
Colloids Surf., A
107
,
1
(
1996
).
5.
M. T.
Cicerone
,
F. R.
Blackburn
, and
M. D.
Ediger
,
J. Chem. Phys.
102
,
471
(
1995
).
6.
R.
Zangi
,
S. A.
Mackowiak
, and
L. J.
Kaufman
,
J. Chem. Phys.
126
,
104501
(
2007
).
7.
K.
Paeng
,
H.
Park
,
D. T.
Hoang
, and
L. J.
Kaufman
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
4952
(
2015
).
8.
A. A.
Gusev
,
F.
Muller-Plathe
,
W. F.
van Gunsteren
, and
U. W.
Suter
,
Adv. Polym. Sci.
116
,
207
(
1994
).
9.
D. N.
Theodorou
, “
Principles of molecular simulation of gas transport in polymers
,” in
Materials Science of Membranes for Gas and Vapor Separation
, edited by
Yu.
Yampolskii
,
I.
Pinnau
, and
B. D.
Freeman
(
Wiley
,
Hoboken, NJ
,
2006
), pp.
49
94
.
10.
A. A.
Gusev
and
U. W.
Suter
,
J. Chem. Phys.
99
,
2228
(
1993
).
11.
A. A.
Gray-Weale
,
R. H.
Henchman
,
R. G.
Gilbert
,
M. L.
Greenfield
, and
D. N.
Theodorou
,
Macromolecules
30
,
7296
(
1997
).
12.
U.
Yamamoto
and
K. S.
Schweizer
,
J. Chem. Phys.
135
,
224902
(
2011
).
13.
J. T.
Kalathi
,
U.
Yamamoto
,
K. S.
Schweizer
,
G. S.
Grest
, and
S. K.
Kumar
,
Phys. Rev. Lett.
112
,
108301
(
2014
).
14.
Z. E.
Dell
and
K. S.
Schweizer
,
Macromolecules
47
,
405
(
2014
).
15.
S.
Mirigian
and
K. S.
Schweizer
,
J. Phys. Chem. Lett.
4
,
3648
(
2013
).
16.
S.
Mirigian
and
K. S.
Schweizer
,
J. Chem. Phys.
140
,
194506
(
2014
).
17.
S.
Mirigian
and
K. S.
Schweizer
,
J. Chem. Phys.
140
,
194507
(
2014
).
18.
T. R.
Kirkpartick
and
P. G.
Wolynes
,
Phys. Rev. A
35
,
3072
(
1987
).
19.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
London
,
1986
).
20.
K. S.
Schweizer
and
E. J.
Saltzman
,
J. Chem. Phys.
119
,
1181
(
2003
).
21.
K. S.
Schweizer
,
J. Chem. Phys.
123
,
244501
(
2005
).
22.
R.
Verberg
,
I. M.
de Schepper
, and
E. G. D.
Cohen
,
Phys. Rev. E
55
,
3143
(
1997
).
23.
E. G. D.
Cohen
,
R.
Verberg
, and
I. M.
de Schepper
,
Physica A
251
,
251
(
1998
).
24.
R.
Jadrich
and
K. S.
Schweizer
,
J. Chem. Phys.
139
,
054502
(
2013
).
25.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
Oxford
,
2001
).
26.
S. G. J. M.
Kluijtmans
and
A. P.
Philipse
,
Langmuir
15
,
1896
(
1999
).
27.
J.
Guan
,
B.
Wang
, and
S.
Granick
,
ACS Nano
8
,
3331
(
2014
).
28.
S.
Chapman
and
T.
Cowling
,
The Mathematical Theory of Non-Uniform Gases
, 3rd ed. (
Cambridge University Press
,
Cambridge
,
1970
).
29.
L.
Xi
,
M.
Shah
, and
B. L.
Trout
,
J. Phys. Chem. B
117
,
3634
(
2013
).
30.
I. Y.
Wong
,
M. L.
Gardel
,
D. R.
Reichman
,
E. R.
Weeks
,
M. T.
Valentine
,
A. R.
Bausch
, and
D. A.
Weitz
,
Phys. Rev. Lett.
92
,
178101
(
2004
).
31.
V. N.
Novikov
,
K. S.
Schweizer
, and
A. P.
Sokolov
,
J. Chem. Phys.
138
,
164508
(
2013
).
32.
J.
Colmenero
,
F.
Alvarez
,
Y.
Khairy
, and
A.
Arbe
,
J. Chem. Phys.
139
,
044906
(
2013
).
33.
E. J.
Saltzman
and
K. S.
Schweizer
,
Phys. Rev. E
74
,
061501
(
2006
).
34.
K. S.
Schweizer
and
G.
Yatsenko
,
J. Chem. Phys.
127
,
164505
(
2007
).
35.
M.
Lohfink
and
H.
Sillescu
,
AIP Conf. Proc.
256
,
30
(
1992
).
36.
M. K.
Mapes
,
S. F.
Swallen
, and
M. D.
Ediger
,
J. Phys. Chem. B
110
,
507
(
2006
).
37.
A.
Tölle
,
Rep. Prog. Phys.
64
,
1473
(
2001
).
38.
S. F.
Swallen
,
M. K.
Mapes
,
Y. S.
Kim
,
R. J.
McMahon
, and
M. D.
Ediger
,
J. Chem. Phys.
124
,
184501
(
2006
).
39.
J.
Wiedersich
,
N. V.
Surovtsev
, and
E.
Rössler
,
J. Chem. Phys.
113
,
1143
(
2000
).
40.
R. D.
Goodwin
,
J. Phys. Chem. Ref. Data
16
,
800
(
1987
).
41.
J.
Matthiesen
,
R. S.
Smith
, and
B. D.
Kay
,
J. Chem. Phys.
133
,
174505
(
2010
).
42.
R. A.
May
,
R. S.
Smith
, and
B. D.
Kay
,
J. Phys. Chem. A
117
,
11881
(
2013
).
43.
D. V.
Matyushov
and
R.
Schmid
,
J. Chem. Phys.
104
,
8627
(
1996
).
44.
M. T.
Cicerone
and
M. D.
Ediger
,
J. Chem. Phys.
104
,
7210
(
1996
).
45.
F. R.
Blackburn
,
C.-Y.
Wang
, and
M. D.
Ediger
,
J. Phys. Chem.
100
,
18249
(
1996
).
46.
S.
Mirigian
and
K. S.
Schweizer
,
Macromolecules
48
,
1901
(
2015
).
You do not currently have access to this content.