Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF2 and Yb/Sr pairs in SrF2 crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4fN−15d excited states of Y b2+: these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b2+ + Ca2+ (Sr2+) → Y b3+ + Ca+ (Sr+) electron phototransfer. This mechanism applies to all the observed Y b2+ 4f–5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF2:Y b2+ because the Y b3+–Ca+ states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF2:Y b2+ at the wavelengths of the first 4f–5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b2+ active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF2 host, associated with the lowest 4f–5d band.

1.
C. W. E.
van Eijk
,
Phys. Med. Biol.
47
,
R85
(
2002
).
2.
Spectroscopic Properties of Rare Earths in Optical Materials
, edited by
G.
Liu
and
B.
Jacquier
(
Springer
,
Berlin
,
2005
).
3.
Luminescence: From Theory to Applications
, edited by
C. R.
Ronda
(
Wiley-VCH
,
Weinheim
,
2007
).
5.
J. W.
Verhoeven
,
Pure Appl. Chem.
68
,
2223
(
1996
).
6.
R. A.
Marcus
,
Annu. Rev. Phys. Chem.
15
,
155
(
1964
).
7.
G. C.
Allen
and
N. S.
Hush
,
Prog. Inorg. Chem.
8
,
357
(
1967
).
8.
N. S.
Hush
,
Prog. Inorg. Chem.
8
,
391
(
1967
).
9.
M.
Robin
and
P.
Day
,
Adv. Inorg. Chem. Radiochem.
10
,
247
(
1968
).
10.
S. B.
Piepho
,
E. R.
Krausz
, and
P. N.
Schatz
,
J. Am. Chem. Soc.
100
,
2996
(
1978
).
11.
R. J. H.
Clark
,
Chem. Soc. Rev.
13
,
219
(
1984
).
12.
G.
Blasse
,
Struct. Bonding
76
,
153
(
1991
).
13.
C.
Wickleder
,
Z. Naturforsch B
57
,
901
(
2002
).
14.
W.
van Schaik
,
S.
Lizzo
,
W.
Smit
, and
G.
Blasse
,
J. Electrochem. Soc.
140
,
216
(
1993
).
15.
E.
Pinel
,
P.
Boutinaud
, and
R.
Mahiou
,
J. Alloys Compd.
380
,
225
(
2004
).
16.
L.
Seijo
and
Z.
Barandiarán
,
J. Chem. Phys.
141
,
214706
(
2014
).
17.
Z.
Barandiarán
and
L.
Seijo
,
J. Chem. Phys.
141
,
234704
(
2014
).
18.
B.
Welber
,
J. Chem. Phys.
42
,
4262
(
1965
).
19.
D. C.
Yu
,
F. T.
Rabouw
,
W. Q.
Boon
,
T.
Kieboom
,
S.
Ye
,
Q. Y.
Zhang
, and
A.
Meijerink
,
Phys. Rev. B
90
,
165126
(
2014
).
20.
Z.
Barandiarán
,
A.
Meijerink
, and
L.
Seijo
,
Phys. Chem. Chem. Phys.
17
,
19874
(
2015
).
21.
B.
Moine
,
B.
Courtois
, and
C.
Pédrini
,
J. Phys.
50
,
2105
(
1989
).
22.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys.
82
,
89
(
1974
).
23.
24.
B. A.
Hess
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
,
Chem. Phys. Lett.
251
,
365
(
1996
).
25.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
26.
P. E. M.
Siegbahn
,
A.
Heiberg
,
J.
Almlöf
, and
B. O.
Roos
,
J. Chem. Phys.
74
,
2384
(
1981
).
27.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
J. A.
Jensen
,
J. Chem. Phys.
89
,
2185
(
1988
).
28.
P.-A.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
,
J. Phys. Chem.
94
,
5477
(
1990
).
29.
P.-Å.
Malmqvist
,
K.
Pierloot
,
A. R.
Moughal Shahi
,
C. J.
Cramer
, and
L.
Gagliardi
,
J. Chem. Phys.
128
,
204109
(
2008
).
30.
K.
Andersson
,
P.-A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
31.
K.
Andersson
,
P.-A.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
,
1218
(
1992
).
32.
A.
Zaitsevskii
and
J.-P.
Malrieu
,
Chem. Phys. Lett.
233
,
597
(
1995
).
33.
J.
Finley
,
P.-A.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
,
Chem. Phys. Lett.
288
,
299
(
1998
).
34.
P. A.
Malmqvist
,
B. O.
Roos
, and
B.
Schimmelpfennig
,
Chem. Phys. Lett.
357
,
230
(
2002
).
35.
Z.
Barandiarán
and
L.
Seijo
,
J. Chem. Phys.
89
,
5739
(
1988
).
36.
L.
Seijo
and
Z.
Barandiarán
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczyński
(
World Scientific
,
Singapore
,
1999
), Vol.
4
, pp.
55
152
.
37.
R.
McWeeny
,
Proc. R. Soc. London, Ser. A
253
,
242
(
1959
).
38.
B. O.
Roos
,
V.
Veryazov
, and
P. O.
Widmark
,
Theor. Chem. Acc.
111
,
345
(
2004
).
39.
B. O.
Roos
,
R.
Lindh
,
P. A.
Malmqvist
,
V.
Veryazov
, and
P. O.
Widmark
,
J. Phys. Chem. A
108
,
2851
(
2005
).
40.
B. O.
Roos
,
R.
Lindh
,
P. A.
Malmqvist
,
V.
Veryazov
,
P. O.
Widmarki
, and
A. C.
Borin
,
J. Phys. Chem. A
112
,
11431
(
2008
).
41.
Z.
Barandiarán
and
L.
Seijo
,
J. Chem. Phys.
138
,
074102
(
2013
).
42.
G.
Karlström
,
R.
Lindh
,
P. A.
Malmqvist
,
B. O.
Roos
,
U.
Ryde
,
V.
Veryazov
,
P. O.
Widmark
,
M.
Cossi
,
B.
Schimmelpfennig
,
P.
Neogrady
 et al.,
Comput. Mater. Sci.
28
,
222
(
2003
).
43.

Detailed core and embedding AIMP data libraries in electronic format are available from the authors upon request or directly at the address http://www.uam.es/quimica/aimp/Data/AIMPLibs.html. See also Ref. 42.

44.
See supplementary material at http://dx.doi.org/10.1063/1.4932388 for all calculated vertical electronic transitions from the energy minimum of three donor-acceptor states: [1A1g, 1A1g], [1Eu, 1A1g], and [2A1u, 1A1g], of Yb/Ca pairs in CaF2and Yb/Sr pairs in SrF2. The electronic transitions have been computed as energy differences between the corresponding diabatic potential energy surfaces.
46.
R. W. G.
Wyckoff
,
Crystal Structures
, 2nd ed. (
Interscience Publishers
,
1982
), Vol.
1
.
47.
P. P.
Feofilov
,
Opt. Spektrosk.
1
,
992
(
1956
).
48.
A. A.
Kaplyanskii
and
P. P.
Feofilov
,
Opt. Spectrosc.
13
,
129
(
1962
).

Supplementary Material

You do not currently have access to this content.