We compare the performance of two well-established computational algorithms for the calculation of free-energy landscapes of biomolecular systems, umbrella sampling and metadynamics. We look at benchmark systems composed of polyethylene and polypropylene oligomers interacting with lipid (phosphatidylcholine) membranes, aiming at the calculation of the oligomer water-membrane free energy of transfer. We model our test systems at two different levels of description, united-atom and coarse-grained. We provide optimized parameters for the two methods at both resolutions. We devote special attention to the analysis of statistical errors in the two different methods and propose a general procedure for the error estimation in metadynamics simulations. Metadynamics and umbrella sampling yield the same estimates for the water-membrane free energy profile, but metadynamics can be more efficient, providing lower statistical uncertainties within the same simulation time.

1.
P.
Kollman
, “
Free energy calculations: Applications to chemical and biochemical phenomena
,”
Chem. Rev.
93
,
2395
2417
(
1993
).
2.
D.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
Cambridge, UK, New York
,
2003
).
3.
B.
Marten
,
K.
Kim
,
C.
Cortis
,
R. A.
Friesner
,
R. B.
Murphy
,
M. N.
Ringnalda
,
D.
Sitkoff
, and
B.
Honig
, “
New model for calculation of solvation free energies: Correction of self-consistent reaction field continuum dielectric theory for short-range hydrogen-bonding effects
,”
J. Phys. Chem.
100
(
28
),
11775
11788
(
1996
).
4.
D. L.
Mobley
,
C. I.
Bayly
,
M. D.
Cooper
,
M. R.
Shirts
, and
K. A.
Dill
, “
Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations
,”
J. Chem. Theory Comput.
5
,
350
358
(
2009
).
5.
A.
Warshel
, “
Calculations of enzymic reactions: Calculations of pka, proton transfer reactions, and general acid catalysis reactions in enzymes
,”
Biochemistry
20
,
3167
3177
(
1981
).
6.
V.
Limongelli
,
L.
Marinelli
,
S.
Cosconati
,
C.
La Motta
,
S.
Sartini
,
L.
Mugnaini
,
F.
Da Settimo
,
E.
Novellino
, and
M.
Parrinello
, “
Sampling protein motion and solvent effect during ligand binding
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
1467
1472
(
2012
).
7.
R. V.
Swift
and
R. E.
Amaro
, “
Back to the future: Can physical models of passive membrane permeability help reduce drug candidate attrition and move us beyond qspr?
,”
Chem. Biol. Drug Des.
81
,
61
71
(
2013
).
8.
G.
Torrie
and
J.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
,
187
199
(
1977
).
9.
F.
Wang
and
D. P.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of states
,”
Phys. Rev. Lett.
86
,
2050
2053
(
2001
).
10.
E.
Darve
and
A.
Pohorille
, “
Calculating free energies using average force
,”
J. Chem. Phys.
115
,
9169
9183
(
2001
).
11.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
12.
L.
Monticelli
,
Biomolecular Simulations Methods and Protocols
(
Humana Press Springer
,
New York
,
2013
).
13.
J. C.
Gumbart
,
B.
Roux
, and
C.
Chipot
, “
Standard binding free energies from computer simulations: What is the best strategy?
,”
J. Chem. Theory Comput.
9
,
794
802
(
2013
).
14.
H. D.
Herce
and
A. E.
Garcia
, “
Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
20805
20810
(
2006
).
15.
L. M.
Lichtenberger
,
Y.
Zhou
,
V.
Jayaraman
,
J. R.
Doyen
,
R. G.
O’Neil
,
E. J.
Dial
,
D. E.
Volk
,
D. G.
Gorenstein
,
M. B.
Boggara
, and
R.
Krishnamoorti
, “
Insight into NSAID-induced membrane alterations, pathogenesis and therapeutics: Characterization of interaction of NSAIDs with phosphatidylcholine
,”
Biochim. Biophys. Acta
1821
,
994
1002
(
2012
).
16.
M. B.
Boggara
,
M.
Mihailescu
, and
R.
Krishnamoorti
, “
Association of nonsteroidal anti-inflammatory drugs with lipid membranes
,”
J. Am. Chem. Soc.
134
,
19669
19676
(
2012
).
17.
G.
Rossi
,
J.
Barnoud
, and
L.
Monticelli
, “
Partitioning and solubility of c-60 fullerene in lipid membranes
,”
Phys. Scr.
87
(
5
),
058503
(
2013
).
18.
J.
Barnoud
,
G.
Rossi
, and
L.
Monticelli
, “
Lipid membranes as solvents for carbon nanoparticles
,”
Phys. Rev. Lett.
112
(
6
),
068102
(
2014
).
19.
G.
Rossi
,
J.
Barnoud
, and
L.
Monticelli
, “
Polystyrene nanoparticles perturb lipid membranes
,”
J. Phys. Chem. Lett.
5
(
1
),
241
246
(
2014
).
20.
M.
Minozzi
,
G.
Lattanzi
,
R.
Benz
,
M. P.
Costi
,
A.
Venturelli
, and
P.
Carloni
, “
Permeation through the cell membrane of a boron-based beta-lactamase inhibitor
,”
PLoS One
6
(
8
),
e23187
(
2011
).
21.
J. P. M.
Jambeck
and
A. P.
Lyubartsev
, “
Exploring the free energy landscape of solutes embedded in lipid bilayers
,”
Phys. Chem. Lett.
4
,
1781
1787
(
2013
).
22.
E.
Piccinini
,
M.
Ceccarelli
,
F.
Affinito
,
R.
Brunetti
, and
C.
Jacoboni
, “
Biased molecular simulations for free-energy mapping: A comparison on the KcsA channel as a test case
,”
J. Chem. Theory Comput.
4
,
173
183
(
2008
).
23.
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenbergl
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
(
8
),
1011
(
1992
).
24.
A.
Laio
,
A.
Fortea-Rodriguez
,
F.
Gervasio
,
M.
Ceccarelli
, and
M.
Parrinello
, “
Assessing the accuracy of metadynamics
,”
J. Phys. Chem. B
109
,
6714
6721
(
2005
).
25.
M.
Parrinello
,
G.
Bussi
, and
A.
Laio
, “
Equilibrium free energies from non equilibrium metadynamics
,”
Phys. Rev. Lett.
96
,
090601
(
2006
).
26.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
27.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
de Vries
, “
The martini force field: Coarse grained model for biomolecular simulations
,”
J. Phys. Chem. B
111
,
7812
7824
(
2007
).
28.
L.
Monticelli
,
S. K.
Kandasamy
,
X.
Periole
,
R. G.
Larson
,
D. P.
Tieleman
, and
S. J.
Marrink
, “
The martini coarse-grained force field: Extension to proteins
,”
J. Chem. Theory Comput.
4
,
819
834
(
2008
).
29.
H.
Lee
,
A. H.
de Vries
,
S. J.
Marrink
, and
R. W.
Pastor
, “
A coarse-grained model for polyethylene oxide and polyethylene glycol: Conformation and hydrodynamics
,”
J. Phys. Chem. B
113
(
40
),
13186
(
2009
).
30.
G.
Rossi
,
L.
Monticelli
,
S. R.
Puisto
,
I.
Vattulainen
, and
T.
Ala-Nissila
, “
Coarse-graining polymers with the martini force-field: Polystyrene as a benchmark case
,”
Soft Matter
7
,
698
708
(
2011
).
31.
C. A.
Lopez
,
A.
Rzepiela
,
A. H.
de Vries
,
L.
Dijkhuizen
,
P. H.
Hunenberger
, and
S. J.
Marrink
, “
The martini coarse-grained force field: Extension to carbohydrates
,”
J. Chem. Theory Comput.
5
,
3195
3210
(
2009
).
32.
L.
Monticelli
, “
On atomistic and coarse-grained models for c60 fullerene
,”
J. Chem. Theory Comput.
8
(
4
),
1370
(
2012
).
33.
E.
Panizon
,
D.
Bochicchio
,
L.
Monticelli
, and
G.
Rossi
, “
MARTINI coarse-grained models of polyethylene and polypropylene
,”
J. Phys. Chem. B
119
,
8209
(
2015
).
34.
J. S.
Hub
,
B. L.
de Groot
, and
D.
van der Spoel
, “
g-wham: A free weighted histogram analysis implementation including robust error and autocorrelation estimates
,”
J. Chem. Theory Comput.
6
,
3713
3720
(
2010
).
35.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
(
3
),
435
447
(
2008
).
36.
B.
Efron
, “
Bootstrap methods: Another look at the jackknife
,”
Ann. Stat.
7
,
1
26
(
1979
).
37.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
,
461
(
1989
).
38.
B.
Hess
, “
Determining the shear viscosity of model liquids from molecular dynamics simulations
,”
J. Chem. Phys.
116
(
1
),
209
217
(
2002
).
39.
A.
Barducci
,
M.
Bonomi
, and
M.
Parrinello
, “
Metadynamics
,”
Comput. Mol. Sci.
1
(
5
),
826
843
(
2011
).
40.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
, “
Well-tempered metadynamics: A smoothly converging and tunable free-energy method
,”
Phys. Rev. Lett.
100
,
020603
(
2008
).
41.
M.
Bonomi
,
D.
Branduardi
,
G.
Bussi
,
C.
Camilloni
,
D.
Provasi
,
P.
Raiteri
,
D.
Donadio
,
F.
Marinelli
,
F.
Pietrucci
,
R. A.
Broglia
, and
M.
Parrinello
, “
Plumed: A portable plugin for free-energy calculations with molecular dynamics
,”
Comput. Phys. Commun.
80
,
1961
1972
(
2009
).
42.
See supplementary material at http://dx.doi.org/10.1063/1.4932159 for a detailed description of the US and MT parameter optimization procedure (Figures S1 and S2) and for a comparison between the performances of the standard MT algorithm vs. the well-tempered MT (Figure S3).

Supplementary Material

You do not currently have access to this content.