The folding kinetics of Rd-apocytochrome b562 is two-state, but native-state hydrogen exchange experiments show that there are discrete partially unfolded (PUF) structures in equilibrium with the native state. These PUF structures are called hidden intermediates because they are not detected in kinetic experiments and they exist after the rate-limiting step. Structures of the mimics of hidden intermediates of Rd-apocytochrome b562 are resolved by NMR. Based upon their relative stability and structural features, the folding mechanism was proposed to follow a specific pathway (unfolded → rate-limiting transition state → PUF1 → PUF2 → native). Investigating the roles of equilibrium PUF structures in folding kinetics and their interrelationship not only deepens our understanding of the details of folding mechanism but also provides guides in protein design and prevention of misfolding. We performed molecular dynamics simulations starting from a hidden intermediate and the native state of Rd-apocytochrome b562 in explicit solvent, for a total of 37.18 μs mainly with Anton. We validated our simulations by detailed comparison with experimental data and other computations. We have verified that we sampled the post rate-limiting transition state region only. Markov state model was used to analyze the simulation results. We replace the specific pathway model with a network model. Transition-path theory was employed to calculate the net effective flux from the most unfolded state towards the most folded state in the network. The proposed sequential folding pathway via PUF1 then more stable, more native-like PUF2 is one of the routes in our network, but it is not dominant. The dominant path visits PUF2 without going through PUF1. There is also a route from PUF1 directly to the most folded state in the network without visiting PUF2. Our results indicate that the PUF states are not necessarily sequential in the folding. The major routes predicted in our network are testable by future experiments such as single molecule experiment.

1.
C.
Levinthal
,
J. Chim. Phys.
65
,
44
45
(
1968
).
2.
A.
Ikai
and
C.
Tanford
,
Nature
230
(
5289
),
100
102
(
1971
).
3.
T. Y.
Tsong
,
R. L.
Baldwin
, and
E. L.
Elson
,
Proc. Natl. Acad. Sci. U. S. A.
68
(
11
),
2712
2715
(
1971
).
4.
Y.
Bai
,
T. R.
Sosnick
,
L.
Mayne
, and
S. W.
Englander
,
Science
269
(
5221
),
192
197
(
1995
).
5.
J.
Cellitti
,
M.
Llinas
,
N.
Echols
,
E. A.
Shank
,
B.
Gillespie
,
E.
Kwon
,
S. M.
Crowder
,
F. W.
Dahlquist
,
T.
Alber
, and
S.
Marqusee
,
Protein Sci.
16
(
5
),
842
851
(
2007
).
6.
J.
Cellitti
,
R.
Bernstein
, and
S.
Marqusee
,
Protein Sci.
16
(
5
),
852
862
(
2007
).
7.
S. W.
Englander
,
L.
Mayne
, and
M. M.
Krishna
,
Q. Rev. Biophys.
40
(
4
),
287
326
(
2007
).
8.
J.
Rumbley
,
L.
Hoang
,
L.
Mayne
, and
S. W.
Englander
,
Proc. Natl. Acad. Sci. U. S. A.
98
(
1
),
105
112
(
2001
).
9.
G. C.
Rollins
and
K. A.
Dill
,
J. Am. Chem. Soc.
136
(
32
),
11420
11427
(
2014
).
10.
N. P.
Schafer
,
R. M.
Hoffman
,
A.
Burger
,
P. O.
Craig
,
E. A.
Komives
, and
P. G.
Wolynes
,
PLoS One
7
(
12
),
e50635
(
2012
).
11.
A. N.
Adhikari
,
K. F.
Freed
, and
T. R.
Sosnick
,
Proc. Natl. Acad. Sci. U. S. A.
109
(
43
),
17442
17447
(
2012
).
12.
B. F.
Volkman
,
D.
Lipson
,
D. E.
Wemmer
, and
D.
Kern
,
Science
291
(
5512
),
2429
2433
(
2001
).
13.
F.
Chiti
and
C. M.
Dobson
,
Nat. Chem. Biol.
5
(
1
),
15
22
(
2009
).
14.
R.
Chu
,
W.
Pei
,
J.
Takei
, and
Y.
Bai
,
Biochemistry
41
,
7998
8003
(
2002
).
15.
S. B.
Ozkan
,
K. A.
Dill
, and
I.
Bahar
,
Protein Sci.
11
(
8
),
1958
1970
(
2002
).
16.
Y.
Bai
,
Biochem. Biophys. Res. Commun.
305
,
785
788
(
2003
).
17.
Z.
Zhou
,
Y.
Huang
, and
Y.
Bai
,
J. Mol. Biol.
352
,
757
764
(
2005
).
18.
D. M.
Korzhnev
,
T. L.
Religa
, and
L. E.
Kay
,
Proc. Natl. Acad. Sci. U. S. A.
109
(
44
),
17777
17782
(
2012
).
19.
D. M.
Korzhnev
and
L. E.
Kay
,
Acc. Chem. Res.
41
(
3
),
442
451
(
2008
).
20.
D. M.
Korzhnev
,
T. L.
Religa
,
W.
Banachewicz
,
A. R.
Fersht
, and
L. E.
Kay
,
Science
329
(
5997
),
1312
1316
(
2010
).
21.
A.
Borgia
,
D.
Bonivento
,
C.
Travaglini-Allocatelli
,
A.
Di Matteo
, and
M.
Brunori
,
J. Biol. Chem.
281
(
14
),
9331
9336
(
2006
).
22.
H.
Feng
,
Z.
Zhou
, and
Y.
Bai
,
Proc. Natl. Acad. Sci. U. S. A.
102
(
14
),
5026
5031
(
2005
).
23.
T. L.
Religa
,
J. S.
Markson
,
U.
Mayor
,
S. M.
Freund
, and
A. R.
Fersht
,
Nature
437
(
7061
),
1053
1056
(
2005
).
24.
S. B.
Whittaker
,
G. R.
Spence
,
J. G.
Grossmann
,
S. E.
Radford
, and
G. R.
Moore
,
J. Mol. Biol.
366
(
3
),
1001
1015
(
2007
).
25.
H.
Kato
,
H.
Feng
, and
Y.
Bai
,
J. Mol. Biol.
365
(
3
),
870
880
(
2007
).
26.
H.
Kato
,
N. D.
Vu
,
H.
Feng
,
Z.
Zhou
, and
Y.
Bai
,
J. Mol. Biol.
365
(
3
),
881
891
(
2007
).
27.
T.
Wang
,
Z.
Zhou
,
M. R.
Bunagan
,
D.
Du
,
Y.
Bai
, and
F.
Gai
,
Protein Sci.
16
(
6
),
1176
1183
(
2007
).
28.
H.
Feng
,
J.
Takei
,
R.
Lipsitz
,
N.
Tjandra
, and
Y.
Bai
,
Biochemistry
42
(
43
),
12461
12465
(
2003
).
29.
H.
Feng
,
N. D.
Vu
, and
Y.
Bai
,
J. Mol. Biol.
343
(
5
),
1477
1485
(
2004
).
30.
H.
Feng
,
N. D.
Vu
, and
Y.
Bai
,
J. Mol. Biol.
346
(
1
),
345
353
(
2005
).
31.
H.
Kaya
and
H. S.
Chan
,
Proteins
58
(
1
),
31
44
(
2005
).
32.
D. E.
Shaw
,
R. O.
Dror
,
J. K.
Salmon
,
J. P.
Grossman
,
K. M.
Mackenzie
,
J. A.
Bank
,
C.
Young
,
M. M.
Deneroff
,
B.
Batson
,
K. J.
Bowers
,
E.
Chow
,
M. P.
Eastwood
,
D. J.
Ierardi
,
J. L.
Klepeis
,
J. S.
Kuskin
,
R. H.
Larson
,
K.
Lindorff-Larsen
,
P.
Maragakis
,
M. A.
Moraes
,
S.
Piana
,
Y.
Shan
, and
B.
Towles
,
presented at the Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (SC09)
,
Portland, OR, USA
(
2009
).
33.
K. A.
Beauchamp
,
R.
McGibbon
,
Y. S.
Lin
, and
V. S.
Pande
,
Proc. Natl. Acad. Sci. U. S. A.
109
(
44
),
17807
17813
(
2012
).
34.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D. E.
Shaw
,
Proteins: Struct., Funct., Bioinf.
78
(
8
),
1950
1958
(
2010
).
35.
J.
Takei
,
W.
Pei
,
D.
Vu
, and
Y.
Bai
,
Biochemistry
41
(
41
),
12308
12312
(
2002
).
36.
Schrödinger LLC, Maestro: A Powerful, All-Purpose Molecular Modeling Environment, 2001, New York, NY.
37.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
935
(
1983
).
38.
K. J.
Bowers
,
E.
Chow
,
H.
Xu
,
R. O.
Dror
,
M. P.
Eastwood
,
B. A.
Gregersen
,
J. L.
Klepeis
,
I.
Kolossváry
,
M. A.
Moraes
,
F. D.
Sacerdoti
,
J. K.
Salmon
,
Y.
Shan
, and
D. E.
Shaw
,
presented at the Proceedings of the ACM/IEEE Conference on Supercomputing (SC06)
,
Tampa, Florida
(
2006
).
39.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
3690
(
1984
).
40.
R. A.
Lippert
,
C.
Predescu
,
D. J.
Ierardi
,
K. M.
Mackenzie
,
M. P.
Eastwood
,
R. O.
Dror
, and
D. E.
Shaw
,
J. Chem. Phys.
139
(
16
),
164106
(
2013
).
41.
Y.
Shan
,
J. L.
Klepeis
,
M. P.
Eastwood
,
R. O.
Dror
, and
D. E.
Shaw
,
J. Chem. Phys.
122
(
5
),
54101
(
2005
).
42.
D.
Frishman
and
P.
Argos
,
Proteins
23
(
4
),
566
579
(
1995
).
43.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
38
(
1996
).
44.
R. B.
Best
,
G.
Hummer
, and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U. S. A.
110
(
44
),
17874
17879
(
2013
).
45.
N. V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
(
19
),
6057
6069
(
2008
).
46.
E. H.
Kellogg
,
O. F.
Lange
, and
D.
Baker
,
J. Phys. Chem. B
116
(
37
),
11405
11413
(
2012
).
47.
K. J.
Kohlhoff
,
D.
Shukla
,
M.
Lawrenz
,
G. R.
Bowman
,
D. E.
Konerding
,
D.
Belov
,
R. B.
Altman
, and
V. S.
Pande
,
Nat. Chem.
6
(
1
),
15
21
(
2014
).
48.
R. D.
Malmstrom
,
C. T.
Lee
,
A. T. V.
Wart
, and
R. E.
Amaro
,
J. Chem. Theory Comput.
10
(
7
),
2648
2657
(
2014
).
49.
K. A.
Beauchamp
,
G. R.
Bowman
,
T. J.
Lane
,
L.
Maibaum
,
I. S.
Haque
, and
V. S.
Pande
,
J. Chem. Theory Comput.
7
(
10
),
3412
3419
(
2011
).
50.
G. R.
Bowman
,
X.
Huang
, and
V. S.
Pande
,
Methods
49
(
2
),
197
201
(
2009
).
51.
W.
E
and
E.
Vanden-Eijnden
,
Annu. Rev. Phys. Chem.
61
,
391
420
(
2010
).
52.
F.
Noe
,
C.
Schutte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
(
45
),
19011
19016
(
2009
).
53.
H.
Tjong
and
H. X.
Zhou
,
Biophys. J.
98
(
10
),
2273
2280
(
2010
).
54.
V.
Munoz
and
L.
Serrano
,
Nat. Struct. Biol.
1
(
6
),
399
409
(
1994
).
55.
E. F.
Pettersen
,
T. D.
Goddard
,
C. C.
Huang
,
G. S.
Couch
,
D. M.
Greenblatt
,
E. C.
Meng
, and
T. E.
Ferrin
,
J. Comput. Chem.
25
(
13
),
1605
1612
(
2004
).
56.
J. H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schutte
, and
F.
Noe
,
J. Chem. Phys.
134
(
17
),
174105
(
2011
).
57.
P. E.
Leopold
,
M.
Montal
, and
J. N.
Onuchic
,
Proc. Natl. Acad. Sci. U. S. A.
89
(
18
),
8721
8725
(
1992
).
58.
P. G.
Wolynes
,
J. N.
Onuchic
, and
D.
Thirumalai
,
Science
267
,
1619
1620
(
1995
).
59.
K. A.
Dill
and
H. S.
Chan
,
Nat. Struct. Biol.
4
(
1
),
10
19
(
1997
).
60.
V. A.
Voelz
,
G. R.
Bowman
,
K.
Beauchamp
, and
V. S.
Pande
,
J. Am. Chem. Soc.
132
(
5
),
1526
1528
(
2010
).
61.
J. D.
Bryngelson
,
J. N.
Onuchic
,
N. D.
Socci
, and
P. G.
Wolynes
,
Proteins
21
(
3
),
167
195
(
1995
).
62.
J.
Hockenmaier
,
A. K.
Joshi
, and
K. A.
Dill
,
Proteins
66
(
1
),
1
15
(
2007
).
63.
J.
Fan
,
M.
Duan
,
D. W.
Li
,
H.
Wu
,
H.
Yang
,
L.
Han
, and
S.
Huo
,
Biophys. J.
100
(
10
),
2457
2465
(
2011
).
64.
See supplementary material at http://dx.doi.org/10.1063/1.4931921 for Figures S1-S5 presenting the observation of convergence in the last step of equilibration, the clustering results solely based on RMSD, helicity of each residue in different trajectories, and the contact maps for the conformations in state 2 to state 7. PDB files of the center of cluster 1-8.

Supplementary Material

You do not currently have access to this content.