The densifying kinetics of lithium dendrites is characterized with effective activation energy of Ea ≈ 6 − 7 kcal mol−1 in our experiments and molecular dynamics computations. We show that heating lithium dendrites for 55 °C reduces the representative dendrites length λ ¯ ( T , t ) up to 36%. NVT reactive force field simulations on three-dimensional glass phase dendrites produced by our coarse grained Monte Carlo method reveal that for any given initial dendrite morphology, there is a unique stable atomic arrangement for a certain range of temperature, combined with rapid morphological transition (∼10 ps) within quasi-stable states involving concurrent bulk and surface diffusions. Our results are useful for predicting the inherent structural characteristics of lithium dendrites such as dominant coordination number.

1.
M.
Armand
and
J. M.
Tarascon
,
Nature
451
,
652
(
2008
).
2.
L.
Vitos
,
A. V.
Ruban
,
H. L.
Skriver
, and
J.
Kollar
,
Surf. Sci.
411
,
186
(
1998
).
3.
A.
Aryanfar
,
D. J.
Brooks
,
A. J.
Colussi
, and
M. R.
Hoffmann
,
Phys. Chem. Chem. Phys.
16
,
24965
(
2014
).
4.
W.
Xu
,
J. L.
Wang
,
F.
Ding
,
X. L.
Chen
,
E.
Nasybutin
,
Y. H.
Zhang
, and
J. G.
Zhang
,
Energy Environ. Sci.
7
,
513
(
2014
).
5.
B.
Huskinson
,
M. P.
Marshak
,
C.
Suh
,
S.
Er
,
M. R.
Gerhardt
,
C. J.
Galvin
,
X.
Chen
,
A.
Aspuru-Guzik
,
R. G.
Gordon
, and
M. J. J.
Aziz
,
Nature
505
,
195
(
2014
).
6.
J. B.
Goodenough
and
Y.
Kim
,
J. Power Sources
196
,
6688
(
2011
).
7.
A.
Aryanfar
,
D.
Brooks
,
B. V.
Merinov
,
W. A.
Goddard
III
,
A. J.
Colussi
, and
M. R.
Hoffmann
,
J. Phys. Chem. Lett.
5
,
1721
(
2014
).
8.
C.
Brissot
,
M.
Rosso
,
J. N.
Chazalviel
, and
S.
Lascaud
,
J. Electrochem. Soc.
146
,
4393
(
1999
).
9.
A. D. P. F.
Orsini
,
B.
Beaudoin
,
J. M.
Tarascon
,
M.
Trentin
,
N.
Langenhuisen
,
E. D.
Beer
, and
P.
Notten
,
J. Power Sources
76
,
19
(
1998
).
10.
X. H.
Liu
,
L.
Zhong
,
L. Q.
Zhang
,
A.
Kushima
,
S. X.
Mao
,
J.
Li
,
Z. Z.
Ye
,
J. P.
Sullivan
, and
J. Y.
Huang
,
Appl. Phys. Lett.
98
,
183107
(
2011
).
11.
C.
Monroe
and
J.
Newman
,
J. Electrochem. Soc.
151
,
A880
(
2004
).
12.
T.
Nishida
,
K.
Nishikawa
,
M.
Rosso
, and
Y.
Fukunaka
,
Electrochim. Acta
100
,
333
(
2013
).
13.
C. P.
Nielsen
and
H.
Bruus
, preprint arXiv:1505.07571 (
2015
).
14.
K. J.
Harry
,
D. T.
Hallinan
,
D. Y.
Parkinson
,
A. A.
MacDowell
, and
N. P.
Balsara
,
Nat. Mater.
13
,
69
(
2014
).
15.
J.
Steiger
,
D.
Kramer
, and
R.
Monig
,
J. Power Sources
261
,
112
(
2014
).
16.
P. C.
Howlett
,
D. R.
MacFarlane
, and
A. F.
Hollenkamp
,
J. Power Sources
114
,
277
(
2003
).
17.
N.
Schweikert
,
A.
Hofmann
,
M.
Schulz
,
M.
Scheuermann
,
S. T.
Boles
,
T.
Hanemann
,
H.
Hahn
, and
S.
Indris
,
J. Power Sources
228
,
237
(
2013
).
18.
R.
Younesi
,
G. M.
Veith
,
P.
Johansson
,
K.
Edström
, and
T.
Vegge
,
Energy Environ. Sci.
8
,
1905
(
2015
).
19.
C.
Brissot
,
M.
Rosso
,
J. N.
Chazalviel
, and
S.
Lascaud
,
J. Power Sources
81
,
925
(
1999
).
20.
A.
Aryanfar
,
D. J.
Brooks
,
A. J.
Colussi
,
B. V.
Merinov
,
W. A.
Goddard
III
, and
M. R.
Hoffmann
,
Phys. Chem. Chem. Phys.
17
,
8000
(
2015
).
21.
I. W.
Seong
,
C. H.
Hong
,
B. K.
Kim
, and
W. Y.
Yoon
,
J. Power Sources
178
,
769
(
2008
).
22.
G.
Stone
,
S.
Mullin
,
A.
Teran
,
D.
Hallinan
,
A.
Minor
,
A.
Hexemer
, and
N.
Balsara
,
J. Electrochem. Soc.
159
,
A222
(
2012
).
23.
R.
Bhattacharyya
,
B.
Key
,
H. L.
Chen
,
A. S.
Best
,
A. F.
Hollenkamp
, and
C. P.
Grey
,
Nat. Mater.
9
,
504
(
2010
).
24.
S.
Chandrashekar
,
N. M.
Trease
,
H. J.
Chang
,
L.-S.
Du
,
C. P.
Grey
, and
A.
Jerschow
,
Nat. Mater.
11
,
311
(
2012
).
25.
J. N.
Chazalviel
,
Phys. Rev. A
42
,
7355
(
1990
).
26.
C.
Monroe
and
J.
Newman
,
J. Electrochem. Soc.
150
,
A1377
(
2003
).
27.
D. R.
Ely
,
A.
Jana
, and
R. E.
García
,
J. Power Sources
272
,
581
(
2014
).
28.
H. E.
Park
,
C. H.
Hong
, and
W. Y.
Yoon
,
J. Power Sources
178
,
765
(
2008
).
29.
J.
Diggle
,
A.
Despic
, and
J. M.
Bockris
,
J. Electrochem. Soc.
116
,
1503
(
1969
).
30.
C.
Brissot
,
M.
Rosso
,
J. N.
Chazalviel
, and
S.
Lascaud
,
J. Power Sources
94
,
212
(
2001
).
31.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical methods, fundamentals and applications
(
Wiley
,
New York
,
1980
), Vol.
2
.
32.
33.
A.
Aryanfar
, “Method and device for dendrite research and discovery in batteries,” U.S. patent application 14/201,979 (September 11, 2014).
34.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
,
J. Phys. Chem. A
105
,
9396
(
2001
).
35.
K.
Chenoweth
,
A. C. T.
van Duin
, and
W. A.
Goddard
,
J. Phys. Chem. A
112
,
1040
(
2008
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.4930014 for the list of ReaxFF parameters; the NVT simulation movie NVT of a sample glass-phase lithium dendrite created by CG-MC method; for surface diffusion mechanism; and for bulk diffusion mechanism.
37.
D.
Sheppard
,
R.
Terrell
, and
G.
Henkelman
,
J. Chem. Phys.
128
,
134106
(
2008
).
38.
B. J.
Berne
,
G.
Cicootti
, and
D. F.
Coker
, “
Classical and quantum dynamics in condensed phase simulations
” (
1998
), p.
385
.
39.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
40.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
41.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
J. Chem. Phys.
101
,
4177
(
1994
).
42.
M.
Jäckle
and
A.
Groß
,
J. Chem. Phys.
141
,
174710
(
2014
).

Supplementary Material

You do not currently have access to this content.