Vibrational sum-frequency generation (SFG) spectroscopy has become an established technique for in situ surface analysis. While spectral recording procedures and hardware have been optimized, unique data analysis routines have yet to be established. The SFG intensity is related to probing geometries and properties of the system under investigation such as the absolute square of the second-order susceptibility χ ( 2 ) 2 . A conventional SFG intensity measurement does not grant access to the complex parts of χ(2) unless further assumptions have been made. It is therefore difficult, sometimes impossible, to establish a unique fitting solution for SFG intensity spectra. Recently, interferometric phase-sensitive SFG or heterodyne detection methods have been introduced to measure real and imaginary parts of χ(2) experimentally. Here, we demonstrate that iterative phase-matching between complex spectra retrieved from maximum entropy method analysis and fitting of intensity SFG spectra (iMEMfit) leads to a unique solution for the complex parts of χ(2) and enables quantitative analysis of SFG intensity spectra. A comparison between complex parts retrieved by iMEMfit applied to intensity spectra and phase sensitive experimental data shows excellent agreement between the two methods.

1.
Y. R.
Shen
, “
Surface properties probed by second-harmonic and sum-frequencyr generation
,”
Nature
337
,
519
525
(
1989
).
2.
C. D.
Bain
, “
Sum-frequency vibrational spectroscopy of the solid/liquid interface
,”
J. Chem. Soc., Faraday Trans.
91
,
1281
1296
(
1995
).
3.
G. L.
Richmond
, “
Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy
,”
Chem. Rev.
102
,
2693
2724
(
2002
).
4.
X.
Chen
,
M. L.
Clarke
,
J.
Wang
, and
Z.
Chen
, “
Sum frequency generation vibrational spectroscopy studies on molecular conformation and orientation of biological molecules at interfaces
,”
Int. J. Mod. Phys. B
19
,
691
713
(
2005
).
5.
F.
Vidal
and
A.
Tadjeddine
, “
Sum-frequency generation spectroscopy of interfaces
,”
Rep. Prog. Phys.
68
,
1095
1127
(
2005
).
6.
H.-F.
Wang
,
W.
Gan
,
R.
Lu
,
Y.
Rao
, and
B.-H.
Wu
, “
Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)
,”
Int. Rev. Phys. Chem.
24
,
191
256
(
2005
).
7.
S.
Roke
, “
Nonlinear optical spectroscopy of soft matter interfaces
,”
ChemPhysChem
10
,
1380
1388
(
2009
).
8.
Z.
Chen
,
Y. R.
Shen
, and
G. A.
Somorjai
, “
Studies of polymer surfaces by sum frequency generation vibrational spectroscopy
,”
Annu. Rev. Phys. Chem.
53
,
437
465
(
2002
).
9.
M. B.
Raschke
and
Y. R.
Shen
, “
Nonlinear optical spectroscopy of solid interfaces
,”
Curr. Opin. Solid State Mater. Sci.
8
,
343
352
(
2005
).
10.
F. M.
Geiger
, “
Second harmonic generation, sum frequency generation, and χ(3): Dissecting environmental interfaces with a nonlinear optical swiss army knife
,”
Annu. Rev. Phys. Chem.
60
,
61
83
(
2009
).
11.
D.
Verreault
,
V.
Kurz
,
C.
Howell
, and
P.
Koelsch
, “
Sample cells for probing solid/liquid interfaces with broadband sum-frequencyr-generation spectroscopy
,”
Rev. Sci. Instrum.
81
,
063111-1
063111-10
(
2010
).
12.
H.
Arnolds
and
M.
Bonn
, “
Ultrafast surface vibrational dynamics
,”
Surf. Sci. Rep.
65
,
45
66
(
2010
).
13.
S.
Roy
,
P. A.
Covert
,
W. R.
FitzGerald
, and
D. K.
Hore
, “
Biomolecular structure at solid–liquid interfaces as revealed by nonlinear optical spectroscopy
,”
Chem. Rev.
114
,
8388
8415
(
2014
).
14.
Y. R.
Shen
, “
Phase-sensitive sum-frequency spectroscopy
,”
Annu. Rev. Phys. Chem.
64
,
129
150
(
2013
).
15.
Y. R.
Shen
and
V.
Ostroverkhov
, “
Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces
,”
Chem. Rev.
106
,
1140
1154
(
2006
).
16.
R. K.
Chang
,
J.
Ducuing
, and
N.
Bloembergen
, “
Relative phase measurement between fundamental and second-harmonic light
,”
Phys. Rev. Lett.
15
,
6
8
(
1965
).
17.
R.
Superfine
,
J. Y.
Huang
, and
Y. R.
Shen
, “
Experimental determination of the sign of molecular dipole moment derivatives: An infrared-visible sum frequency generation absolute phase measurement study
,”
Chem. Phys. Lett.
172
,
303
306
(
1990
).
18.
N.
Ji
,
V.
Ostroverkhov
,
C.-Y.
Chen
, and
Y.-R.
Shen
, “
Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains
,”
J. Am. Chem. Soc.
129
,
10056
10057
(
2007
).
19.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
, “
Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study
,”
J. Chem. Phys.
130
,
204704-1
204704-5
(
2009
).
20.
A. G. F.
de Beer
,
J.-S.
Samson
,
W.
Hua
,
Z.
Huang
,
X.
Chen
,
H. C.
Allen
, and
S.
Roke
, “
Direct comparison of phase-sensitive vibrational sum frequency generation with maximum entropy method: Case study of water
,”
J. Chem. Phys.
135
,
224701-1
224701-9
(
2011
).
21.
P.-K.
Yang
and
J. Y.
Huang
, “
Phase-retrieval problems in infrared-visible sum-frequency generation spectroscopy by the maximum-entropy method
,”
J. Opt. Soc. Am. B
14
,
2443
2448
(
1997
).
22.
P.-K.
Yang
and
J. Y.
Huang
, “
Model-independent maximum-entropy method for the analysis of sum-frequency vibrational spectroscopy
,”
J. Opt. Soc. Am. B
17
,
1216
1222
(
2000
).
23.
A. G. F.
de Beer
,
Y.
Chen
,
R.
Scheu
,
J. C.
Conboy
, and
S.
Roke
, “
Analysis of complex spectra using Fourier filtering
,”
J. Phys. Chem. C
117
,
26582
26587
(
2013
).
24.
M.
Sovago
,
E.
Vartiainen
, and
M.
Bonn
, “
Erratum: Observation of buried water molecules in phospholipid membranes by surface sum-frequency generation spectroscopy.
,”
J. Chem. Phys.
133
,
229901-1
229901-2
(
2010
).
25.
M.
Sovago
,
E.
Vartiainen
, and
M.
Bonn
, “
Determining absolute molecular orientation at interfaces: A phase retrieval approach for sum frequency generation spectroscopy
,”
J. Phys. Chem. C
113
,
6100
6106
(
2009
).
26.
M.
Sovago
,
E.
Vartiainen
, and
M.
Bonn
, “
Observation of buried water molecules in phospholipid membranes by surface sum-frequency generation spectroscopy
,”
J. Chem. Phys.
131
,
161107-1
161107-4
(
2009
).
27.
V.
Ostroverkhov
,
G. A.
Waychunas
, and
Y. R.
Shen
, “
New information on water interfacial structure revealed by phase-sensitive surface spectroscopy
,”
Phys. Rev. Lett.
94
,
046102-1
046102-4
(
2005
).
28.
P. J.
Nowakowski
,
D. A.
Woods
,
C. D.
Bain
, and
J. R. R.
Verlet
, “
Time-rsolved phase-sensitive second harmonic generation spectroscopy
,”
J. Chem. Phys.
142
,
084201-1
084201-8
(
2015
).
29.
R. E.
Pool
,
J.
Versluis
,
E. H. G.
Backus
, and
M.
Bonn
, “
Comparative study of direct and phase-specific vibrational sum-frequency generation spectroscopy: Advantages and limitations
,”
J. Phys. Chem. B
115
,
15362
15369
(
2011
).
30.
C. S.
Tian
and
Y. R.
Shen
, “
Sum-frequency vibrational spectroscopic studies of water/vapor interfaces
,”
Chem. Phys. Lett.
470
,
1
6
(
2009
).
31.
L.
Velarde
and
H.-F.
Wang
, “
Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS)
,”
Phys. Chem. Chem. Phys.
15
,
19970
19984
(
2013
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.4932180 for details about the iMEMfit graphic user interface as well as for the residuals from fitting the simulated spectrum.

Supplementary Material

You do not currently have access to this content.