Protein-surface interactions are ubiquitous in biological processes and bioengineering, yet are not fully understood. In biosensors, a key factor determining the sensitivity and thus the performance of the device is the orientation of the ligand molecules on the bioactive device surface. Adsorption studies thus seek to determine how orientation can be influenced by surface preparation, varying surface charge, and ambient salt concentration. In this work, protein orientation near charged nanosurfaces is obtained under electrostatic effects using the Poisson-Boltzmann equation, in an implicit-solvent model. Sampling the free energy for protein G B1 D4′ at a range of tilt and rotation angles with respect to the charged surface, we calculated the probability of the protein orientations and observed a dipolar behavior. This result is consistent with published experimental studies and combined Monte Carlo and molecular dynamics simulations using this small protein, validating our method. More relevant to biosensor technology, antibodies such as immunoglobulin G are still a formidable challenge to molecular simulation, due to their large size. With the Poisson-Boltzmann model, we obtained the probability distribution of orientations for the iso-type IgG2a at varying surface charge and salt concentration. This iso-type was not found to have a preferred orientation in previous studies, unlike the iso-type IgG1 whose larger dipole moment was assumed to make it easier to control. Our results show that the preferred orientation of IgG2a can be favorable for biosensing with positive charge on the surface of 0.05 C/m2 or higher and 37 mM salt concentration. The results also show that local interactions dominate over dipole moment for this protein. Improving immunoassay sensitivity may thus be assisted by numerical studies using our method (and open-source code), guiding changes to fabrication protocols or protein engineering of ligand molecules to obtain more favorable orientations.

1.
J. J.
Gray
, “
The interaction of proteins with solid surfaces
,”
Curr. Opin. Struct. Biol.
14
,
110
115
(
2004
).
2.
M.
Rabe
,
D.
Verdes
, and
S.
Seeger
, “
Understanding protein adsorption phenomena at solid surfaces
,”
Adv. Colloid Interface Sci.
162
,
87
106
(
2011
).
3.
J.-Y.
Byun
,
Y.-B.
Shin
,
T.
Li
,
J.-H.
Park
,
D.-M.
Kim
,
D.-H.
Choi
, and
M.-G.
Kim
, “
The use of an engineered single chain variable fragment in a localized surface plasmon resonance method for analysis of the c-reactive protein
,”
Chem. Commun.
49
,
9497
9499
(
2013
).
4.
A. K.
Trilling
,
T.
Hesselink
,
A.
van Houwelingen
,
J. H. G.
Cordewener
,
M. A.
Jongsma
,
S.
Schoffelen
,
J. C. M.
van Hest
,
H.
Zuilhof
, and
J.
Beekwilder
, “
Orientation of llama antibodies strongly increases sensitivity of biosensors
,”
Biosen. Bioelectron.
60
,
130
136
(
2014
).
5.
N.
Tajima
,
M.
Takai
, and
K.
Ishihara
, “
Significance of antibody orientation unraveled: Well-oriented antibodies recorded high binding affinity
,”
Anal. Chem.
83
,
1969
1976
(
2011
).
6.
A. K.
Trilling
,
J.
Beekwilder
, and
H.
Zuilhof
, “
Antibody orientation on biosensor surfaces: A minireview
,”
Analyst
138
,
1619
1627
(
2013
).
7.
J. E.
Baio
,
T.
Weidner
,
L.
Baugh
,
L. J.
Gamble
,
P. S.
Stayton
, and
D. G.
Castner
, “
Probing the orientation of electrostatically immobilized protein G B1 by time-of-flight secondary ion spectrometry, sum frequency generation, and near-edge X-ray adsorption fine structure spectroscopy
,”
Langmuir
28
,
2107
2112
(
2012
).
8.
J.
Liu
,
C.
Liao
, and
J.
Zhou
, “
Multiscale simulations of protein G B1 adsorbed on charged self-assembled monolayers
,”
Langmuir
29
,
11366
11374
(
2013
).
9.
J.
Zhou
,
S.
Chen
, and
S.
Jiang
, “
Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model
,”
Langmuir
19
,
3472
3478
(
2003
).
10.
C. D.
Cooper
and
L. A.
Barba
, “Poisson-Boltzmann model for protein-surface interactions and grid-convergence study using the PyGBe code,” preprint arXiv:1506.03745(submitted).
11.
Y.
Yao
and
A. M.
Lenhoff
, “
Electrostatic contributions to protein retention in ion-exchange chromatography. 1. Cytochrome c variants
,”
Anal. Chem.
76
,
6743
6752
(
2004
).
12.
Y.
Yao
and
A. M.
Lenhoff
, “
Electrostatic contributions to protein retention in ion-exchange chromatography. 2. Proteins with various degrees of structural differences
,”
Anal. Chem.
77
,
2157
2165
(
2005
).
13.
C. M.
Roth
,
B. L.
Neal
, and
A. M.
Lenhoff
, “
Van del Waals interactions involving proteins
,”
Biophys. J.
70
,
977
987
(
1996
).
14.
A. H.
Juffer
,
P.
Argos
, and
J.
De Vlieg
, “
Adsorption of proteins onto charged surfaces: A Monte Carlo approach with explicit ions
,”
J. Comput. Chem.
17
,
1783
1803
(
1996
).
15.
Y.-J.
Sheng
,
H.-K.
Tsao
,
J.
Zhou
, and
S.
Jiang
, “
Orientation of a Y-shaped biomolecule adsorbed on a charged surface
,”
Phys. Rev. E
66
,
011911
(
2002
).
16.
J.
Zhou
,
H.-K.
Tsao
,
Y.-J.
Sheng
, and
S.
Jiang
, “
Monte Carlo simulations of antibody adsorption and orientation on charged surfaces
,”
J. Chem. Phys.
121
,
1050
1057
(
2004
).
17.
A. S.
Freed
and
S. M.
Cramer
, “
Protein-surface interaction maps for ion-exchange chromatography
,”
Langmuir
27
,
3561
3568
(
2011
).
18.
P. M.
Biesheuvel
,
M.
van der Veen
, and
W.
Norde
, “
A modified Poisson-Boltzmann model including charge regulation for the adsorption of ionizable polyelectrolytes to charged interfaces, applied to lysozyme adsorption on silica
,”
J. Phys. Chem. B
109
,
4172
4180
(
2005
).
19.
R. A.
Hartvig
,
M.
van de Weert
,
J.
Ostergaard
,
L.
Jorgensen
, and
H.
Jensen
, “
Protein adsorption at charged surfaces: The role of electrostatic interactions and interfacial charge regulation
,”
Langmuir
27
,
2634
2643
(
2011
).
20.
C. D.
Cooper
,
J. P.
Bardhan
, and
L. A.
Barba
, “
A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers
,”
Comput. Phys. Commun.
185
,
720
729
(
2014
); preprint arXiv:/1309.4018.
21.
M. D.
Altman
,
J. P.
Bardhan
,
J. K.
White
, and
B.
Tidor
, “
Accurate solution of multi-region continuum electrostatic problems using the linearized Poisson–Boltzmann equation and curved boundary elements
,”
J. Comput. Chem.
30
,
132
153
(
2009
).
22.
B. J.
Yoon
and
A. M.
Lenhoff
, “
A boundary element method for molecular electrostatics with electrolyte effects
,”
J. Comput. Chem.
11
,
1080
1086
(
1990
).
23.
A. H.
Juffer
,
E. F. F.
Botta
,
B. A. M.
Vankeulen
,
A.
Vanderploeg
, and
H. J. C.
Berendsen
, “
The electric potential of a macromolecule in a solvent: A fundamental approach
,”
J. Comput. Phys.
97
,
144
171
(
1991
).
24.
B.
Lu
,
X.
Cheng
,
J.
Huang
, and
J. A.
McCammon
, “
Order N algorithm for computation of electrostatic interactions in biomolecular systems
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
19314
19319
(
2006
).
25.
C.
Bajaj
,
S. C.
Chen
, and
A.
Rand
, “
An efficient higher-order fast multipole boundary element solution for Poisson-Boltzmann-based molecular electrostatics
,”
SIAM J. Sci. Comput.
33
,
826
848
(
2011
).
26.
W. H.
Geng
and
R.
Krasny
, “
A treecode-accelerated boundary integral Poisson-Boltzmann solver for solvated biomolecules
,”
J. Comput. Phys.
247
,
62
78
(
2013
).
27.
B. J.
Yoon
and
A.
Lenhoff
, “
Computation of the electrostatic interaction energy between a protein and a charged surface
,”
J. Phys. Chem.
96
,
3130
3134
(
1992
).
28.
J. L.
Hess
and
A.
Smith
, “
Calculation of potential flow about arbitrary bodies
,”
Prog. Aerosp. Sci.
8
,
1
138
(
1967
).
29.
J.
Barnes
and
P.
Hut
, “
A hierarchical O(NlogN) force-calculation algorithm
,”
Nature
324
,
446
449
(
1986
).
30.
C. D.
Cooper
and
L. A.
Barba
, “
Validation of the PyGBe code for Poisson-Boltzmann equation with boundary element methods
,”
Technical Report on figshare, CC-BY license
,
2013
.
31.
D. Y.
Chan
and
D. J.
Mitchell
, “
The free energy of an electrical double layer
,”
J. Colloid Interface Sci.
95
,
193
197
(
1983
).
32.
S. L.
Carnie
and
D. Y.
Chan
, “
Interaction free energy between identical spherical colloidal particles: The linearized Poisson-Boltzmann theory
,”
J. Colloid Interface Sci.
155
,
297
312
(
1993
).
33.
N.
Guex
and
M. C.
Peitsch
, “
SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling
,”
Electrophoresis
18
,
2714
2723
(
1997
), http://www.expasy.org/spdbv/.
34.
See https://github.com/barbagroup/pygbe for the code repository under version control.
35.
T. J.
Dolinsky
,
J. E.
Nielsen
,
J. A.
McCammon
, and
N. A.
Baker
, “
PDB2PQR: An automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations
,”
Nucleic Acids Res.
32
,
W665
W667
(
2004
).
36.
M. F.
Sanner
,
A. J.
Olson
, and
J.-C.
Spehner
, “
Fast and robust computation of molecular surfaces
,” in
Proceedings of the 11th Annual Symposium on Computational Geometry
(
ACM
,
1995
), pp.
406
407
.
37.
C. D.
Cooper
and
L. A.
Barba
, “Grid convergence of PyGBe with protein G B1 D4,” Data, figures and plottings script onfigshare, CC-BY license, 2015, .
38.
C. D.
Cooper
and
L. A.
Barba
, “Protein orientation near a charged surface using PyGBe and protein G B1 D4,” Data, figures and plottings script onfigshare, CC-BY license, 2015, .
39.
C. D.
Cooper
and
L. A.
Barba
, “Grid convergence of PyGBe with immunoglobulin G near a charged surface,” Data, figures and plottings script onfigshare, CC-BY license, 2015, .
40.
C. D.
Cooper
and
L. A.
Barba
, “Protein orientation near charged surface using PyGBe with immunoglobulin G,” Data, figures and plottings script onfigshare, CC-BY license, 2015, .
41.
M.
Mijajlovic
,
M. J.
Penna
, and
M. J.
Biggs
, “
Free energy of adsorption for a peptide at a liquid/solid interface via nonequilibrium molecular dynamics
,”
Langmuir
29
,
2919
2926
(
2013
).
42.
J.
Buijs
,
D. D.
White
, and
W.
Norde
, “
The effect of adsorption on the antigen binding by IgG and its F(ab) 2 fragments
,”
Colloids Surf., B
8
,
239
249
(
1997
).
43.
S.
Chen
,
L.
Liu
,
J.
Zhou
, and
S.
Jiang
, “
Controlling antibody orientation on charged self assembled-monolayers
,”
Langmuir
19
,
2859
2864
(
2003
).
44.
W.
Bu
,
D.
Vaknin
, and
A.
Travesset
, “
How accurate is Poisson-Boltzmann theory for monovalent ions near highly charged interfaces?
,”
Langmuir
22
,
5673
5681
(
2006
).
45.
N. A.
Baker
,
D.
Sept
,
M. J.
Holst
, and
J. A.
McCammon
, “
Electrostatics of nanosystems: Application to microtubules and the ribosome
,”
Proc. Natl. Acad. Sci. U. S. A.
98
,
10037
10041
(
2001
).
46.
F.
Fogolari
,
P.
Zuccato
,
G.
Esposito
, and
P.
Viglino
, “
Biomolecular electrostatics with the linearized Poisson-Boltzmann equation
,”
Biophys. J.
76
,
1
16
(
1999
).
47.
See supplementary material at http://dx.doi.org/10.1063/1.4931113 showing that solvation energy dominates on orientation probability distribution.

Supplementary Material

You do not currently have access to this content.