We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H–Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

1.
M. H.
Qiu
,
Z. F.
Ren
,
L.
Che
,
D. X.
Dai
,
S. A.
Harich
,
X. Y.
Wang
,
X. M.
Yang
,
C. X.
Xu
,
D. Q.
Xie
,
M.
Gustafsson
,
R. T.
Skodje
,
Z. G.
Sun
, and
D. H.
Zhang
,
Science
311
,
1440
(
2006
).
2.
D.
Townsend
,
S. A.
Lahankar
,
S. K.
Lee
,
S. D.
Chambreau
,
A. G.
Suits
,
X.
Zhang
,
J.
Rheinecker
,
L. B.
Harding
, and
J. M.
Bowman
,
Science
306
,
1158
(
2004
).
3.
J. C.
Polanyi
,
Acc. Chem. Res.
5
,
161
(
1972
).
4.
S.
Nave
and
B.
Jackson
,
Phys. Rev. Lett.
98
,
173003
(
2007
).
5.
M.
Bonfanti
,
C.
Díaz
,
M. F.
Somers
, and
G.-J.
Kroes
,
Phys. Chem. Chem. Phys.
13
,
4552
(
2011
).
6.
F.
Nattino
,
C.
Díaz
,
B.
Jackson
, and
G. J.
Kroes
,
Phys. Rev. Lett.
108
,
236104
(
2012
).
7.
Y.
Huang
,
C. T.
Rettner
,
D. J.
Auerbach
, and
A. M.
Wodtke
,
Science
290
,
111
(
2000
).
8.
J. D.
White
,
J.
Chen
,
D.
Matsiev
,
D. J.
Auerbach
, and
A. M.
Wodtke
,
Nature
433
,
503
(
2005
).
9.
N.
Shenvi
,
S.
Roy
, and
J. C.
Tully
,
Science
326
,
829
(
2009
).
10.
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
103
,
10137
(
1995
).
11.
J. K.
Nørskov
and
B. I.
Lundqvist
,
Surf. Sci.
89
,
251
(
1979
).
12.
S. M.
Janke
,
M.
Pavanello
,
G.-J.
Kroes
,
D. J.
Auerbach
,
A. M.
Wodtke
, and
A.
Kandratsenka
,
Z. Phys. Chem.
227
,
1467
(
2013
).
13.
J.
Strömquist
,
L.
Bengtsson
,
M.
Persson
, and
B.
Hammer
,
Surf. Sci.
397
,
382
(
1998
).
14.
C.
Díaz
,
E.
Pijper
,
R. A.
Olsen
,
H. F.
Busnengo
,
D. J.
Auerbach
, and
G. J.
Kroes
,
Science
326
,
832
(
2009
).
15.
M.
Pavanello
,
D. J.
Auerbach
,
A. M.
Wodtke
,
M.
Blanco-Rey
,
M.
Alducin
, and
G.-J.
Kroes
,
J. Phys. Chem. Lett.
4
,
3735
(
2013
).
16.
G.-J.
Kroes
,
M.
Pavanello
,
M.
Blanco-Rey
,
M.
Alducin
, and
D. J.
Auerbach
,
J. Chem. Phys.
141
,
054705
(
2014
).
17.
M.
Blanco-Rey
,
J. I.
Juaristi
,
R.
Diez Muino
,
H. F.
Busnengo
,
G. J.
Kroes
, and
M.
Alducin
,
Phys. Rev. Lett.
112
,
103203
(
2014
).
18.
M. E.
Tuckerman
,
J. Phys.: Condens. Matter
14
,
R1297
(
2002
).
19.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
20.
Y.
Li
and
G.
Wahnström
,
Phys. Rev. B
46
,
14528
(
1992
).
21.
J.
Juaristi
,
M.
Alducin
,
R.
Díez Muiño
,
H. F.
Busnengo
, and
A.
Salin
,
Phys. Rev. Lett.
100
,
116102
(
2008
).
22.
J. V.
Barth
,
H.
Brune
,
G.
Ertl
, and
R. J.
Behm
,
Phys. Rev. B
42
,
9307
(
1990
).
23.
J. K.
Nørskov
and
N. D.
Lang
,
Phys. Rev. B
21
,
2131
(
1980
).
24.
J. K.
Nørskov
,
Phys. Rev. B
26
,
2875
(
1982
).
25.
K. W.
Jacobsen
,
J. K.
Nørskov
, and
M. J.
Puska
,
Phys. Rev. B
35
,
7423
(
1987
).
26.
K. W.
Jacobsen
,
P.
Stoltze
, and
J. K.
Nørskov
,
Surf. Sci.
366
,
394
(
1996
).
27.
A.
Groß
,
Theoretical Surface Science. A Microscopic Perspective
(
Springer-Verlag
,
Berlin, Heidelberg
,
2009
).
28.
S. R.
Bahn
and
K. W.
Jacobsen
,
Comput. Sci. Eng.
4
,
56
(
2002
).
29.
M. J.
Puska
and
R. M.
Nieminen
,
Phys. Rev. B
27
,
6121
(
1983
).
30.
K.
Levenberg
,
Q. Appl. Math.
2
,
164
(
1944
).
31.
D. W.
Marquardt
,
J. Soc. Ind. Appl. Math.
11
,
431
(
1963
).
32.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
33.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
34.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
35.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.4931669 for more detail.
37.
A.
Kant
and
K. A.
Moon
,
High Temp. Sci.
11
,
55
(
1979
).
38.
A.
Hoss
,
U.
Romahn
,
M.
Nold
,
P. v.
Blanckenhagen
, and
O.
Meyer
,
Europhys. Lett.
20
,
125
(
1992
).
39.
G.
Sachs
and
J.
Weets
,
Z. Phys. Chem.
60
,
481
(
1930
).
40.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
Wiley & Sons, Inc.
,
2010
).
41.
B.
Golding
,
S. C.
Moss
, and
B. L.
Averbach
,
Phys. Rev.
158
,
637
(
1967
).
42.
H.
Preston-Thomas
,
Metrologia
27
,
3
(
1990
).
43.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
,
Oxford Science Publications
(
Oxford University Press
,
1989
).
44.
Y.
Wang
,
N. S.
Hush
, and
J. R.
Reimers
,
Phys. Rev. B
75
,
233416
(
2007
).
45.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
46.
P. M.
Echenique
,
R. M.
Nieminen
,
J. C.
Ashley
, and
R. H.
Ritchie
,
Phys. Rev. A
33
,
897
(
1986
).
47.
H.
Winter
,
J. I.
Juaristi
,
I.
Nagy
,
A.
Arnau
, and
P. M.
Echenique
,
Phys. Rev. B
67
,
245401
(
2003
).

Supplementary Material

You do not currently have access to this content.