Grand-canonical Monte Carlo simulations and adsorption experiments are combined to find the optimized carbon nanotube (CNT) arrays for gas adsorption at low pressures and 303 K. Bundles of 3D aligned double-walled carbon nanotube (DWCNT) with inner diameter of 8 nm and different intertube distances were made experimentally. The experimental results show that decreasing intertube distance leads to a significant enhancement in carbon-dioxide (CO2) adsorption capacity at 1 bar. The molecular simulation study on CO2 adsorption onto bundles of 3D aligned DWCNT with inner diameters of 1, 3, and 8 nm and intertube distance of 0-15 nm shows that the intertube distance plays a more important role than the CNT diameter. The simulation results show that decreasing the intertube distance up to 1 nm increases the excess adsorption generally in all the studied systems at pressures 0 < p < 14 bars (the increase can be up to ∼40% depending on the system and pressure). This is in agreement with the experimental result. Further reduction in intertube distance leads to a decrease in the excess adsorption in the pressure range 9 < p < 14 bars. However, at lower pressure, 0 < p < 9 bars, intertube distance of 0.5 nm is found to have the highest excess adsorption. This result is indifferent to tube diameter. Furthermore, molecular simulations are conducted to obtain the optimal parameters, for the DWCNT bundle, for SO2 adsorption, which are similar to those observed for CO2 in the pressure range 0 < p < 3 bars.

1.
R. K.
Pachauri
,
M. R.
Allen
,
V. R.
Barros
,
J.
Broome
,
W.
Cramer
,
R.
Christ
,
J. A.
Church
,
L.
Clarke
,
Q.
Dahe
,
P.
Dasgupta
,
N. K.
Dubash
,
O.
Edenhofer
,
I.
Elgizouli
,
C. B.
Field
,
P.
Forster
,
P.
Friedlingstein
,
J.
Fuglestvedt
,
L.
Gomez-Echeverri
,
S.
Hallegatte
,
G.
Hegerl
,
M.
Howden
,
K.
Jiang
,
B.
Jimenez Cisneros
,
V.
Kattsov
,
H.
Lee
,
K. J.
Mach
,
J.
Marotzke
,
M. D.
Mastrandrea
,
L.
Meyer
,
J.
Minx
,
Y.
Mulugetta
,
K.
O’Brien
,
M.
Oppenheimer
,
J. J.
Pereira
,
R.
Pichs-Madruga
,
G.-K.
Plattner
,
H.-O.
Pörtner
,
S. B.
Power
,
B.
Preston
,
N. H.
Ravindranath
,
A.
Reisinger
,
K.
Riahi
,
M.
Rusticucci
,
R.
Scholes
,
K.
Seyboth
,
Y.
Sokona
,
R.
Stavins
,
T. F.
Stocker
,
P.
Tschakert
,
D.
van Vuuren
, and
J.-P.
van Ypersele
,
IPCC, 2014:
Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
, edited by
R.
Pachauri
and
L.
Meyer
(
IPCC
,
Geneva, Switzerland
), 151 pp., http://hdl.handle.net/10013/epic.45156.
2.
D. M.
D’Alessandro
,
B.
Smit
, and
J. R.
Long
, “
Carbon dioxide capture: Prospects for new materials
,”
Angew. Chem., Int. Ed.
49
,
6058
6082
(
2010
).
3.
A. D.
Ellerman
,
Markets for Clean Air: The U.S. Acid Rain Program
(
Cambridge University Press
,
2000
).
4.
F. L.
Darkrim
,
P.
Malbrunot
, and
G. P.
Tartaglia
, “
Review of hydrogen storage by adsorption in carbon nanotubes
,”
Int. J. Hydrogen Energy
27
,
193
202
(
2002
).
5.
M. J.
O’Connell
,
Carbon Nanotubes: Properties and Applications
(
CRC Press
,
2006
).
6.
X.
Ren
,
C.
Chen
,
M.
Nagatsu
, and
X.
Wang
, “
Carbon nanotubes as adsorbents in environmental pollution management: A review
,”
Chem. Eng. J.
170
,
395
410
(
2011
).
7.
E. J.
Bottani
and
J. M. D.
Tascón
,
Adsorption by Carbons: Novel Carbon Adsorbents
(
Elsevier
,
2011
).
8.
A. V.
Eletskii
, “
Sorption properties of carbon nanostructures
,”
Phys.-Usp.
47
,
1119
1154
(
2004
).
9.
L.
Liu
and
S. K.
Bhatia
, “
Molecular simulation of CO2 adsorption in the presence of water in single-walled carbon nanotubes
,”
J. Phys. Chem. C
117
,
13479
13491
(
2013
).
10.
X.
Peng
,
D.
Cao
, and
W.
Wang
, “
Adsorption and separation of CH4/CO2/N2/H2/CO mixtures in hexagonally ordered carbon nanopipes CMK-5
,”
Chem. Eng. Sci.
66
,
2266
2276
(
2011
).
11.
P.
Kowalczyk
,
S.
Furmaniak
,
P. A.
Gauden
, and
A. P.
Terzyk
, “
Optimal single-walled carbon nanotube vessels for short-term reversible storage of carbon dioxide at ambient temperatures
,”
J. Phys. Chem. C
114
,
21465
21473
(
2010
).
12.
A.
Cao
,
H.
Zhu
,
X.
Zhang
,
X.
Li
,
D.
Ruan
,
C.
Xu
,
B.
Wei
,
J.
Liang
, and
D.
Wu
, “
Hydrogen storage of dense-aligned carbon nanotubes
,”
Chem. Phys. Lett.
342
,
510
514
(
2001
).
13.
D.
Zilli
,
P. R.
Bonelli
, and
A. L.
Cukierman
, “
Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays
,”
Nanotechnology
17
,
5136
5141
(
2006
).
14.
S.
Agnihotri
,
J. P. B.
Mota
,
M.
Rostam-Abadi
, and
M. J.
Rood
, “
Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation
,”
Langmuir
21
,
896
904
(
2005
).
15.
F. J. A. L.
Cruz
,
I. A. A. C.
Esteves
, and
J. P. B.
Mota
, “
Adsorption of light alkanes and alkenes onto single-walled carbon nanotube bundles: Langmuirian analysis and molecular simulations
,”
Colloids Surf., A
357
,
43
52
(
2010
).
16.
W.
Shi
and
J.
Johnson
, “
Gas adsorption on heterogeneous single-walled carbon nanotube bundles
,”
Phys. Rev. Lett.
91
,
015504
(
2003
).
17.
S.
Agnihotri
,
J. P. B.
Mota
,
M.
Rostam-Abadi
, and
M. J.
Rood
, “
Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles
,”
Carbon
44
,
2376
2383
(
2006
).
18.
F. J. A. L.
Cruz
,
I. A. A. C.
Esteves
,
S.
Agnihotri
, and
J. P. B.
Mota
, “
Adsorption equilibria of light organics on single-walled carbon nanotube heterogeneous bundles: Thermodynamical aspects
,”
J. Phys. Chem. C
115
,
2622
2629
(
2011
).
19.
J. J.
Cannon
,
T. J. H.
Vlugt
,
D.
Dubbeldam
,
S.
Maruyama
, and
J.
Shiomi
, “
Simulation study on the adsorption properties of linear alkanes on closed nanotube bundles
,”
J. Phys. Chem. B
116
,
9812
9819
(
2012
).
20.
F.
Cruz
and
J.
Mota
, “
Thermodynamics of adsorption of light alkanes and alkenes in single-walled carbon nanotube bundles
,”
Phys. Rev. B
79
,
165426
(
2009
).
21.
M.
Rahimi
,
J. K.
Singh
,
D. J.
Babu
,
J. J.
Schneider
, and
F.
Müller-Plathe
, “
Understanding carbon dioxide adsorption in carbon nanotube arrays: Molecular simulation and adsorption measurements
,”
J. Phys. Chem. C
117
,
13492
13501
(
2013
).
22.
D. J.
Babu
,
M.
Lange
,
G.
Cherkashinin
,
A.
Issanin
,
R.
Staudt
, and
J. J.
Schneider
, “
Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays
,”
Carbon
61
,
616
623
(
2013
).
23.
R.
Joshi
,
J.
Engstler
,
L.
Houben
,
M. B.
Sadan
,
A.
Weidenkaff
,
P.
Mandaliev
,
A.
Issanin
, and
J. J.
Schneider
, “
Catalyst composition, morphology and reaction pathway in the growth of ‘super-long’ carbon nanotubes
,”
ChemCatChem
2
,
1069
1073
(
2010
).
24.
J. G.
Harris
and
K. H.
Yung
, “
Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model
,”
J. Phys. Chem.
99
,
12021
12024
(
1995
).
25.
M. H.
Ketko
,
G.
Kamath
, and
J. J.
Potoff
, “
Development of an optimized intermolecular potential for sulfur dioxide
,”
J. Phys. Chem. B
115
,
4949
4954
(
2011
).
26.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
,
5179
5197
(
1995
).
27.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
(
1995
).
28.
M. L.
Greenfield
and
D. N.
Theodorou
, “
Geometric analysis of diffusion pathways in glassy and melt atactic polypropylene
,”
Macromolecules
26
,
5461
5472
(
1993
).
29.
J.
Jiang
and
S. I.
Sandler
, “
Separation of CO2 and N2 by adsorption in C168 schwarzite: A combination of quantum mechanics and molecular simulation study
,”
J. Am. Chem. Soc.
127
,
11989
11997
(
2005
).
30.
R.
Babarao
,
Z.
Hu
,
J.
Jiang
,
S.
Chempath
, and
S. I.
Sandler
, “
Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: A comparative study from Monte Carlo simulation
,”
Langmuir
23
,
659
666
(
2007
).
31.
D. J.
Babu
,
S.
Yadav
,
T.
Heinlein
,
G.
Cherkashinin
, and
J. J.
Schneider
, “
Carbon dioxide plasma as a versatile medium for purification and functionalization of vertically aligned carbon nanotubes
,”
J. Phys. Chem. C
118
,
12028
12034
(
2014
).
32.
D. J.
Babu
,
S. N.
Varanakkottu
,
A.
Eifert
,
D.
de Koning
,
G.
Cherkashinin
,
S.
Hardt
, and
J. J.
Schneider
, “
Inscribing wettability gradients onto superhydrophobic carbon nanotube surfaces
,”
Adv. Mater. Interfaces
1
,
1300049
(
2014
).
33.
T.
Yamada
,
T.
Namai
,
K.
Hata
,
D. N.
Futaba
,
K.
Mizuno
,
J.
Fan
,
M.
Yudasaka
,
M.
Yumura
, and
S.
Iijima
, “
Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts
,”
Nat. Nanotechnol.
1
,
131
136
(
2006
).
34.
B.
Zhao
,
D. N.
Futaba
,
S.
Yasuda
,
M.
Akoshima
,
T.
Yamada
, and
K.
Hata
, “
Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts
,”
ACS Nano
3
,
108
114
(
2009
).
35.
M.
De Volder
and
A. J.
Hart
, “
Engineering hierarchical nanostructures by elastocapillary self-assembly
,”
Angew. Chem., Int. Ed.
52
,
2412
2425
(
2013
).
36.
D. N.
Futaba
,
K.
Hata
,
T.
Yamada
,
T.
Hiraoka
,
Y.
Hayamizu
,
Y.
Kakudate
,
O.
Tanaike
,
H.
Hatori
,
M.
Yumura
, and
S.
Iijima
, “
Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes
,”
Nat. Mater.
5
,
987
994
(
2006
).
37.
H.-J.
Butt
,
K.
Graf
, and
M.
Kappl
,
Physics and Chemistry of Interfaces
(
John Wiley & Sons
,
2006
).
38.
I.
Langmuir
, “
The adsorption of gases on plane surfaces of glass, mica and platinum
,”
J. Am. Chem. Soc.
40
,
1361
1403
(
1918
).
39.
H.
Freundlich
,
Kapillarchemie
(
Akademische Verlagsgesellschaft
,
Wiesbaden, Germany
,
1909
).
40.
See supplementary material at http://dx.doi.org/10.1063/1.4929609 for the simulation data, best, and worst fits of Langmuir and Freundlich of excess adsorption isotherms of CO2 in double-walled carbon nanotube arrays.

Supplementary Material

You do not currently have access to this content.