With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

1.
J. G.
Kirkwood
,
J. Chem. Phys.
3
,
300
(
1935
).
2.
E.
Carter
,
G.
Ciccotti
,
J. T.
Hynes
, and
R.
Kapral
,
Chem. Phys. Lett.
156
,
472
(
1989
).
3.
M.
Sprik
and
G.
Ciccotti
,
J. Chem. Phys.
109
,
7737
(
1998
).
4.
A.
Laio
and
F. L.
Gervasio
,
Rep. Prog. Phys.
71
,
126601
(
2008
).
5.
Free Energy Calculations
, edited by
C.
Chipot
and
A.
Pohorille
(
Springer-Verlag
,
Berlin, Heidelberg
,
2007
).
6.
W.
E
and
E.
Vanden-Eijnden
,
Annu. Rev. Phys. Chem.
61
,
391
(
2010
).
7.
C.
Abrams
and
G.
Bussi
,
Entropy
16
,
163
(
2014
).
8.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
9.
M.
Iannuzzi
,
A.
Laio
, and
M.
Parrinello
,
Phys. Rev. Lett.
90
,
23
(
2003
).
10.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
Cambridge
,
2009
).
11.
A.
Barducci
,
M.
Bonomi
, and
M.
Parrinello
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
826
(
2011
).
12.
G.
Bussi
,
A.
Laio
, and
M.
Parrinello
,
Phys. Rev. Lett.
96
,
10
(
2006
).
13.
B.
Ensing
,
A.
Laio
,
M.
Parrinello
, and
M. L.
Klein
,
J. Phys. Chem. B
109
,
6676
(
2005
).
15.
D.
Laria
,
G.
Ciccotti
,
M.
Ferrario
, and
R.
Kapral
,
Chem. Phys.
180
,
181
(
1994
).
16.
17.
M. J.
Gillan
,
Philos. Mag. A
58
,
257
(
1988
), see in particular Secs. 3.4 and 3.5.
18.
M. E.
Tuckerman
and
D.
Marx
,
Phys. Rev. Lett.
86
,
4946
(
2001
).
19.
C.
Drechsel-Grau
and
D.
Marx
,
Phys. Rev. Lett.
112
,
148302
(
2014
).
20.
C.
Drechsel-Grau
and
D.
Marx
,
Angew. Chem., Int. Ed.
53
,
10937
(
2014
).
21.
C.
Drechsel-Grau
and
D.
Marx
,
Nat. Phys.
11
,
216
(
2015
).
22.
R.
van Zon
,
L.
Hernández de la Peña
,
G.
Peslherbe
, and
J.
Schofield
,
Phys. Rev. E
78
,
1
(
2008
).
23.
Y.
Crespo
,
A.
Laio
,
G. E.
Santoro
, and
E.
Tosatti
,
Phys. Rev. E
80
,
015702
(
2009
).
24.
V.
Babin
,
C.
Roland
, and
C.
Sagui
,
J. Chem. Phys.
128
,
134101
(
2008
).
25.
26.
S.
Habershon
and
D. E.
Manolopoulos
,
J. Chem. Phys.
135
,
224111
(
2011
).
27.
M.
Shiga
and
H.
Fujisaki
,
J. Chem. Phys.
136
,
184103
(
2012
).
28.
O.
Birer
and
M.
Havenith
,
Annu. Rev. Phys. Chem.
60
,
263
(
2009
).
29.
D.
Luckhaus
,
Phys. Chem. Chem. Phys.
12
,
8357
(
2010
).
30.
N.
Shida
,
P. F.
Barbara
, and
J.
Almlöf
,
J. Chem. Phys.
94
,
3633
(
1991
).
31.
Y.
Kim
,
J. Am. Chem. Soc.
118
,
1522
(
1996
).
32.
J.-H.
Lim
,
E. K.
Lee
, and
Y.
Kim
,
J. Phys. Chem. A
101
,
2233
(
1997
).
33.
S.
Miura
,
M. E.
Tuckerman
, and
M. L.
Klein
,
J. Chem. Phys.
109
,
5290
(
1998
).
34.
T.
Loerting
and
K. R.
Liedl
,
J. Am. Chem. Soc.
120
,
12595
(
1998
).
35.
J.
Kohanoff
,
S.
Koval
,
D. A.
Estrin
,
D.
Laria
, and
Y.
Abashkin
,
J. Chem. Phys.
112
,
9498
(
2000
).
36.
H.
Ushiyama
and
K.
Takatsuka
,
J. Chem. Phys.
115
,
5903
(
2001
).
37.
Y.
Shigeta
,
U.
Ushiyama
, and
K.
Takatsuka
,
J. Mol. Struct.
615
,
267
(
2002
).
38.
D.
Wei
,
J. F.
Truchon
,
S.
Sirois
, and
D.
Salahub
,
J. Chem. Phys.
116
,
6028
(
2002
).
39.
C. S.
Tautermann
,
M. J.
Loferer
,
A. F.
Voegele
, and
K. R.
Liedl
,
J. Chem. Phys.
120
,
11650
(
2004
).
40.
G. V.
Mil’nikov
,
O.
Kühn
, and
H.
Nakamura
,
J. Chem. Phys.
123
,
074308
(
2005
).
41.
P. R. L.
Markwick
,
N. L.
Doltsinis
, and
D.
Marx
,
J. Chem. Phys.
122
,
54112
(
2005
).
42.
F.
Fillaux
,
Chem. Phys. Lett.
408
,
302
(
2005
).
43.
S.
Sharan
,
S.
Pal
,
D. G.
Kanhere
, and
A.
Goursot
,
Indian J. Chem.
45A
,
202
(
2006
).
44.
D.
Luckhaus
,
J. Phys. Chem. A
110
,
3151
(
2006
).
45.
I.
Matanović
,
N.
Doslić
, and
O.
Kühn
,
J. Chem. Phys.
127
,
014309
(
2007
).
46.
G. L.
Barnes
and
E. L.
Sibert
III
,
J. Chem. Phys.
129
,
164317
(
2008
).
47.
G. L.
Barnes
,
S. M.
Squires
, and
E. L.
Sibert
III
,
J. Phys. Chem. B
112
,
595
(
2008
).
48.
C.
Burisch
,
P. R. L.
Markwick
,
N. L.
Doltsinis
, and
J.
Schlitter
,
J. Chem. Theory Comput.
4
,
164
(
2008
).
49.
L. C. T.
Pierce
,
P. R. L.
Markwick
,
J. A.
McCammon
, and
N. L.
Doltsinis
,
J. Chem. Phys.
134
,
174107
(
2011
).
50.
M.
Okuyama
and
K.
Takatsuka
,
Bull. Chem. Soc. Jpn.
85
,
217
(
2012
).
51.
Z.
Smedarchina
,
W.
Siebrand
, and
A.
Fernandez-Ramos
,
J. Phys. Chem. A
117
,
11086
11100
(
2013
).
52.
A.
Jain
and
E. L.
Sibert
III
,
J. Chem. Phys.
142
,
084115
(
2015
).
53.
M. J.
Gillan
, in
Computer Modelling of Fluids, Polymers, and Solids
, edited by
C. R. A.
Catlow
,
S. C.
Parker
, and
M. P.
Allen
(
Kluwer
,
Dordrecht
,
1990
).
54.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
55.
C.
Chakravarty
,
Int. Rev. Phys. Chem.
16
,
421
(
1997
).
56.
M. E.
Tuckerman
and
A.
Hughes
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
).
57.
D.
Marx
and
M. H.
Müser
,
J. Phys.: Condens. Matter
11
,
R117
(
1999
).
58.
M. E.
Tuckerman
, in
Quantum Simulations of Complex Many–Body Systems: From Theory to Algorithms
,
NIC Series
Vol.
10
, edited by
J.
Grotendorst
,
D.
Marx
, and
A.
Muramatsu
(
John von Neumann Institute for Computing
,
Jülich
,
2002
), pp.
269
298
.
59.
A.
Witt
,
S. D.
Ivanov
,
M.
Shiga
,
H.
Forbert
, and
D.
Marx
,
J. Chem. Phys.
130
,
194510
(
2009
).
60.
D.
Chandler
and
P. G.
Wolynes
,
J. Chem. Phys.
74
,
4078
(
1981
).
61.
M. E.
Tuckerman
,
B. J.
Berne
,
G. J.
Martyna
, and
M. L.
Klein
,
J. Chem. Phys.
99
,
2796
(
1993
).
62.
G. J.
Martyna
,
M. L.
Klein
, and
M. E.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
63.
D.
Marx
and
M.
Parrinello
,
Z. Phys. B: Condens. Matter
95
,
143
(
1994
).
64.
D.
Marx
and
M.
Parrinello
,
J. Chem. Phys.
104
,
4077
(
1996
).
65.
M. E.
Tuckerman
,
D.
Marx
,
M. L.
Klein
, and
M.
Parrinello
,
J. Chem. Phys.
104
,
5579
(
1996
).
66.
D.
Marx
,
M. E.
Tuckerman
, and
G. J.
Martyna
,
Comput. Phys. Commun.
118
,
166
(
1999
).
67.
D.
Marx
,
Lect. Notes Phys.
704
,
507
(
2006
).
68.
G. A.
Voth
,
Adv. Chem. Phys.
93
,
135
(
2007
).
69.
R.
Ramírez
and
T.
López-Ciudad
, in
Quantum Simulations of Complex Many–Body Systems: From Theory to Algorithms
,
NIC
Vol.
10
, edited by
J.
Grotendorst
,
D.
Marx
, and
A.
Muramatsu
(
John von Neumann Institute for Computing
,
2002
), pp.
325
375
.
70.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
71.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
72.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
73.
K. S.
Thanthiriwatte
,
E. G.
Hohenstein
,
L. A.
Burns
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
7
,
88
(
2011
).
74.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
75.
TURBOMOLE V6.2 2010, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, 2007.
76.
J.
Hutter
 et al, CPMD for the simulation package, see, www.cpmd.org.
77.
M.
Benoit
and
D.
Marx
,
ChemPhysChem
6
,
1738
(
2005
).
78.
R.
Quhe
,
M.
Nava
,
P.
Tiwary
, and
M.
Parrinello
,
J. Chem. Theory Comput.
11
,
1383
1388
(
2015
).
You do not currently have access to this content.