We have investigated the lowest energy structures and interaction energies of the oxygen nitrous oxide complex (O2–N2O) using explicitly correlated coupled cluster theory. We find that the intermolecular potential energy surface of O2–N2O is very flat, with two minima of comparable energy separated by a low energy first order saddle point. Our results are able to conclusively distinguish between the two sets of experimental geometric parameters for O2–N2O that were previously determined from rotationally resolved infrared spectra. The global minimum structure of O2–N2O is therefore found to be planar with a distorted slipped parallel structure. Finally, we show that the very flat potential energy surface of O2–N2O is problematic when evaluating vibrational frequencies with a numerical Hessian and that consideration should be given as to whether results might change if the step-size is varied.

1.
A. R.
Ravishankara
,
J. S.
Daniel
, and
R. W.
Portmann
,
Science
326
,
123
(
2009
), ISSN 1095-9203.
2.
IPCC
, in
Climate Change 2013
, edited by
T.
Stocker
,
D.
Qin
,
G.-K.
Plattner
,
M.
Tignor
,
S.
Allen
,
J.
Boschung
,
A.
Nauels
,
Y.
Xia
,
V.
Bex
, and
P.
Midgley
(
IPCC
,
Geneva, Switzerland
,
2013
), p.
1535
.
3.
J.
Huang
,
A.
Golombek
,
R.
Prinn
,
R.
Weiss
,
P.
Fraser
,
P.
Simmonds
,
E. J.
Dlugokencky
,
B.
Hall
,
J.
Elkins
,
P.
Steele
 et al,
J. Geophys. Res.
113
,
D17313
, doi:10.1029/2007JD009381 (
2008
), ISSN 0148-0227.
4.
A.
Syakila
and
C.
Kroeze
,
Greenhouse Gas Meas. Manage.
1
,
17
(
2011
), ISSN 2043-0779.
5.
R.
Spahni
,
J.
Chappellaz
,
T. F.
Stocker
,
L.
Loulergue
,
G.
Hausammann
,
K.
Kawamura
,
J.
Flückiger
,
J.
Schwander
,
D.
Raynaud
,
V.
Masson-Delmotte
 et al,
Science
310
,
1317
(
2005
), ISSN 1095-9203.
6.
C. M.
Volk
,
J. W.
Elkins
,
D. W.
Fahey
,
G. S.
Dutton
,
J. M.
Gilligan
,
M.
Loewenstein
,
J. R.
Podolske
,
K. R.
Chan
, and
M. R.
Gunson
,
J. Geophys. Res.
102
,
25543
, doi:10.1029/97JD02215 (
1997
), ISSN 0148-0227.
7.
N.
Rontu Carlon
,
D. K.
Papanastasiou
,
E. L.
Fleming
,
C. H.
Jackman
,
P. A.
Newman
, and
J. B.
Burkholder
,
Atmos. Chem. Phys.
10
,
6137
(
2010
), ISSN 1680-7324.
8.
R.
Schinke
,
J. Chem. Phys.
134
,
064313
(
2011
), ISSN 1089-7690.
9.
J. A.
Schmidt
,
M. S.
Johnson
, and
R.
Schinke
,
Atmos. Chem. Phys.
11
,
8965
(
2011
), ISSN 1680-7324.
10.
W.
Klemperer
and
V.
Vaida
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
10584
(
2006
), ISSN 0027-8424.
11.
L.
Brown
and
V.
Vaida
,
J. Phys. Chem.
100
,
7849
(
1996
), ISSN 0022-3654.
12.
M.
Bahou
,
L.
Schriver-Mazzuoli
,
C.
Camy-Peyret
,
A.
Schriver
,
T.
Chiavassa
, and
J.
Aycard
,
Chem. Phys. Lett.
265
,
145
(
1997
), ISSN 00092614.
13.
H.-B.
Qian
,
D.
Seccombe
, and
B. J.
Howard
,
J. Chem. Phys.
107
,
7658
(
1997
), ISSN 0021-9606.
14.
S.
Li
,
R.
Zheng
, and
C.-X.
Duan
,
Chin. Phys. B
23
,
123301
(
2014
), ISSN 1674-1056.
15.
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
), ISSN 17590876.
16.
S.
Simon
,
M.
Duran
, and
J. J.
Dannenberg
,
J. Chem. Phys.
105
,
11024
(
1996
), ISSN 00219606.
17.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
131
,
194105
(
2009
), ISSN 1089-7690.
18.
D. W.
Schwenke
,
J. Chem. Phys.
122
(
2005
), ISSN 00219606.
19.
K. M.
De Lange
and
J. R.
Lane
,
J. Chem. Phys.
134
,
034301
(
2011
), ISSN 00219606.
20.
J.
Stanton
,
J.
Gauss
,
M.
Harding
, and
P.
Szalay
, CFOUR, a quantum chemical program, http://www.cfour.de.
21.
J. D.
McMahon
and
J. R.
Lane
,
J. Chem. Phys.
135
,
154309
(
2011
), ISSN 00219606.
22.
See supplementary material at http://dx.doi.org/10.1063/1.4931629 for intermolecular potential energy surfaces obtained with the CCSD(T) and CCSD(T)-F12 methods; harmonic vibrational frequencies of N2O monomer.
23.
J. R.
Lane
and
H. G.
Kjaergaard
,
J. Chem. Phys.
131
,
1
(
2009
), ISSN 00219606.
24.
J. R.
Lane
,
J. Chem. Theory Comput.
9
,
316
(
2013
), ISSN 15499618.

Supplementary Material

You do not currently have access to this content.