We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

1.
W. S.
Warren
,
H.
Rabitz
, and
M.
Dahleh
, “
Coherent control of quantum dynamics: The dream is alive
,”
Science
259
(
5101
),
1581
(
1993
).
2.
M.
Shapiro
and
P.
Brumer
,
Principles of the Quantum Control of Molecular Processes
(
John Wiley & Sons
,
New Jersey
,
2003
).
3.
W.
Zhu
,
J.
Botina
, and
H.
Rabitz
, “
Rapidly convergent iteration methods for quantum optimal control of population
,”
J. Chem. Phys.
108
(
5
),
1953
(
1998
).
4.
J.
Werschnik
and
E. K. U.
Gross
, “
Quantum optimal control theory
,”
J. Phys. B.
40
(
18
),
R175
(
2007
).
5.
R. D.
Guerrero
,
C. A.
Arango
, and
A.
Reyes
, “
Optimal control of wave-packets: A semiclassical approach
,”
Mol. Phys.
112
(
3-4
),
408
(
2014
).
6.
K.
Kormann
,
S.
Holmgren
, and
H. O.
Karlsson
, “
A Fourier-coefficient based solution of an optimal control problem in quantum chemistry
,”
J. Optim. Theory Appl.
147
(
3
),
491
(
2010
).
7.
W. L.
Goffe
,
G. D.
Ferrier
, and
J.
Rogers
, “
Global optimization of statistical functions with simulated annealing
,”
J. Econometrics
60
(
1
),
65
(
1994
).
8.
B.
Amstrup
,
J. G.
Tóth
,
H.
Rabitz
, and
A.
Lőrincz
, “
Identification of Born-Oppenheimer potential energy surfaces of diatomic molecules from optimized chirped pulses
,”
Chem. Phys.
201
(
1
),
95
(
1995
).
9.
Z.
Michalewicz
,
Genetic Algorithms + Data Structures = Evolution Programs
(
Springer
,
Berlin
,
1996
).
10.
Q. M.
Phan
and
H.
Rabitz
, “
A self-guided algorithm for learning control of quantum-mechanical systems
,”
J. Chem. Phys.
110
(
1
),
34
(
1999
).
11.
C. M.
Tesch
,
L.
Kurtz
, and
R.
de Vivie-Riedle
, “
Applying optimal control theory for elements of quantum computation in molecular systems
,”
Chem. Phys. Lett.
343
(
5
),
633
(
2001
).
12.
T.
Brixner
,
B.
Kiefer
, and
G.
Gerber
, “
Problem complexity in femtosecond quantum control
,”
Chem. Phys.
267
(
1
),
241
(
2001
).
13.
D. B.
Fogel
,
Evolutionary Computation: Toward a New Philosophy of Machine Intelligence
(
John Wiley & Sons
,
New Jersey
,
2006
), Vol.
1
.
14.
M.
Tsubouchi
and
T.
Momose
, “
Rovibrational wave-packet manipulation using shaped midinfrared femtosecond pulses toward quantum computation: Optimization of pulse shape by a genetic algorithm
,”
Phys. Rev. A
77
(
5
),
052326
(
2008
).
15.
T.
Grinev
and
P.
Brumer
, “
Theory of perturbative pulse train based coherent control
,”
J. Chem. Phys.
140
(
12
),
124307
(
2014
).
16.
N. L.
Doltsinis
and
D.
Marx
, “
First principles molecular dynamics involving excited states and nonadiabatic transitions
,”
J. Theor. Comput. Chem.
1
(
02
),
319
(
2002
).
17.
S.
Ruhman
and
R.
Kosloff
, “
Application of chirped ultrashort pulses for generating large-amplitude ground-state vibrational coherence: A computer simulation
,”
J. Opt. Soc. Am. B
7
(
8
),
1748
(
1990
).
18.
T.
Szakács
,
B.
Amstrup
,
P.
Gross
,
R.
Kosloff
,
H.
Rabitz
, and
A.
Lörincz
, “
Locking a molecular bond: A case study of CsI
,”
Phys. Rev. A
50
(
3
),
2540
(
1994
).
19.
H.
Zhang
,
K. L.
Han
,
G. Z.
He
, and
N. Q.
Lou
, “
Wavepacket-shaping by a frequency-chirping technique
,”
Chem. Phys. Lett.
289
(
5
),
494
(
1998
).
20.
J. L.
Carini
,
J. A.
Pechkis
,
C. E.
Rogers
III
,
P. L.
Gould
,
S.
Kallush
, and
R.
Kosloff
, “
Quantum dynamical calculations of ultracold collisions induced by nonlinearly chirped light
,”
Phys. Rev. A
85
(
1
),
013424
(
2012
).
21.
Y.
Huang
,
W.
Zhang
,
G. R.
Wang
,
T.
Xie
, and
S. L.
Cong
, “
Formation of 85Rb2 ultracold molecules via photoassociation by two-color laser fields modulating the Gaussian amplitude
,”
Phys. Rev. A
86
(
4
),
043420
(
2012
).
22.
S.
Amaran
,
R.
Kosloff
,
M.
Tomza
,
W.
Skomorowski
,
F.
Pawłowski
,
R.
Moszynski
,
L.
Rybak
,
L.
Levin
,
Z.
Amitay
,
J.
Martin Berglund
,
D. M.
Reich
, and
C. P.
Koch
, “
Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions
,”
J. Chem. Phys.
139
(
16
),
164124
(
2013
).
23.
J. L.
Carini
,
J. A.
Pechkis
,
C. E.
Rogers
III
,
P. L.
Gould
,
S.
Kallush
, and
R.
Kosloff
, “
Production of ultracold molecules with chirped nanosecond pulses: Evidence for coherent effects
,”
Phys. Rev. A
87
(
1
),
011401
(
2013
).
24.
Y.
Huang
,
T.
Xie
,
G. R.
Wang
,
W.
Zhang
, and
S. L.
Cong
, “
Creation of ultracold Cs2 molecules via two-step photoassociation with Gaussian and chirped pulses
,”
Laser Phys.
24
(
4
),
046001
(
2014
).
25.

We used δt = 1.875 × 10−1 and ω ≈ 9 × 10−3 in our numerical simulation in Section III.

26.
J.
Alvarellos
and
H.
Metiu
, “
The evolution of the wave function in a curve crossing problem computed by a fast Fourier transform method
,”
J. Chem. Phys.
88
(
8
),
4957
(
1988
).
27.

The probability of occurrence of a genetic operation, πM(πX), is defined as follows: first, generate a random number from the uniform distribution between zero and one; second, if this number is lower than πM(πX), the operation is performed. The probabilities πM = 0.15 and πX = 0.8 were used in this work.

28.

It is crucial to limit the generation of the initial list of individuals to the region of the parameters space with experimental relevance.

29.
W. T.
Zemke
,
W. C.
Stwalley
, and
S. C.
Yang
, “
Spectroscopy and structure of the alkali hydride diatomic molecules and their ions
,”
J. Phys. Chem. Ref. Data
20
(
1
),
153
(
1991
).
30.
P.
Gross
,
D.
Neuhauser
, and
H.
Rabitz
, “
Optimal control of curve-crossing systems
,”
J. Chem. Phys.
96
(
4
),
2834
(
1992
).
31.

A diabatic representation of the dynamics was used through the paper.

32.
See supplementary material at http://dx.doi.org/10.1063/1.4931449 for parameters for the optimal pulse comprised of 60 LCPs.
33.
Z.
Ghahramani
,
Unsupervised Learning
(
Springer
,
Berlin, Heidelberg
,
2004
).
34.
D. J.
Tannor
,
R.
Kosloff
, and
S. A.
Rice
, “
Coherent pulse sequence induced control of selectivity of reactions: Exact quantum mechanical calculations
,”
J. Chem. Phys.
85
(
10
),
5805
(
1986
).
35.
L.
Cohen
, “
Time-frequency distributions-a review
,”
Proc. IEEE
77
(
7
),
941
981
(
1989
).
36.
L.
Cohen
,
Time-Frequency Analysis
(
Prentice hall
,
Englewood Cliffs, NJ
,
1995
), Vol.
1
.
37.
R. F.
Begley
,
A. B.
Harvey
, and
R. L.
Byer
, “
Coherent anti-Stokes Raman spectroscopy
,”
Appl. Phys. Lett.
25
(
7
),
387
(
1974
).
38.
S. A.
Malinovskaya
and
V. S.
Malinovsky
, “
Chirped-pulse adiabatic control in coherent anti-Stokes Raman scattering for imaging of biological structure and dynamics
,”
Opt. Lett.
32
(
6
),
707
(
2007
).

Supplementary Material

You do not currently have access to this content.