Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor–liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields Tc = 1.3128 ± 0.0016, ρc = 0.316 ± 0.004, and pc = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρt ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using rcut = 3.5σ yield Tc and pc that are higher by 0.2% and 1.4% than simulations with rcut = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that rcut = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard-core square-well particles with various ranges of the attractive well and for n-decane molecules represented by the TraPPE force field yield data that support the trends observed for Lennard-Jones particles. The finite-size dependence of the critical properties obtained from GEMC simulations is significantly smaller than those from grand-canonical ensemble simulations. Thus, when resources are not available for a rigorous finite-size scaling study, GEMC simulations provide a straightforward route to determine fairly accurate critical properties using relatively small system sizes.

1.
G.
Maitland
,
M.
Rigby
,
E. B.
Smith
, and
W. A.
Wakeham
,
Intermolecular Forces: Their Origin and Determination
(
Clarendon Press
,
Oxford
,
1981
).
2.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
London
,
1986
).
3.
J.-P.
Hansen
and
L.
Verlet
,
Phys. Rev.
184
,
151
(
1969
).
4.
J. J.
Nicolas
,
K. E.
Gubbins
,
W. B.
Streett
, and
D. J.
Tildesley
,
Mol. Phys.
37
,
1429
(
1979
).
5.
D.
Möller
and
J.
Fischer
,
Mol. Phys.
69
,
463
(
1990
).
6.
I.
Szalai
,
J.
Liszi
, and
D.
Boda
,
Chem. Phys. Lett.
246
,
214
(
1995
).
7.
H.
Okumura
and
F.
Yonezawa
,
J. Non-Cryst. Solids
295
,
715
(
2001
).
8.
H.
Okumura
and
F.
Yonezawa
,
J. Non-Cryst. Solids
314
,
256
(
2002
).
9.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
10.
A. Z.
Panagiotopoulos
,
N.
Quirke
,
M.
Stapleton
, and
D. J.
Tildesley
,
Mol. Phys.
63
,
527
(
1988
).
11.
B.
Smit
,
P.
de Smedt
, and
D.
Frenkel
,
Mol. Phys.
68
,
931
(
1989
).
12.
A. Z.
Panagiotopoulos
,
Int. J. Thermophys.
15
,
1057
(
1994
).
13.
N. B.
Wilding
,
Phys. Rev. E
52
,
602
(
1995
).
14.
J. M.
Caillol
,
J. Chem. Phys.
109
,
4885
(
1998
).
15.
J. J.
Potoff
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
109
,
10914
(
1998
).
16.
L. D.
Gelb
and
E. A.
Müller
,
Fluid Phase Equilib.
203
,
1
(
2002
).
17.
J. T.
Fern
,
D. J.
Keffer
, and
W. V.
Steele
,
J. Phys. Chem. B
111
,
3469
(
2007
).
18.
N. B.
Wilding
,
J. Phys.: Condens. Matter
9
,
585
(
1997
).
19.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Oxford University Press
,
New York
,
1989
).
20.
J. S.
Rowlinson
and
F. L.
Swinton
,
Liquids and Liquid Mixtures
, 3rd ed. (
Butterworth
,
London
,
1982
).
21.
B.
Smit
, “
Simulation of phase coexistence: From atoms to surfactants
,” Ph.D. thesis,
Koninklijke/Shell Laboratorium
, Amsterdam,
1990
.
22.
B.
Smit
,
J. Chem. Phys.
96
,
8639
(
1992
).
23.
J.
Mick
,
E.
Hailat
,
V.
Russo
,
K.
Rushaidat
,
L.
Schwiebert
, and
J.
Potoff
,
Comput. Phys. Commun.
184
,
2662
(
2013
).
24.
T. J. H.
Vlugt
,
M. G.
Martin
,
B.
Smit
,
J. I.
Siepmann
, and
R.
Krishna
,
Mol. Phys.
94
,
727
(
1998
).
25.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1987
).
26.
A. D.
Cortés Morales
,
I. G.
Economou
,
C. J.
Peters
, and
J. I.
Siepmann
,
Mol. Simul.
39
,
1135
(
2013
).
27.
G.
Orkoulas
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
110
,
1581
(
1999
).
28.
G.
Orkoulas
,
M. E.
Fisher
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
63
,
051507
(
2001
).
29.
J. K.
Singh
,
D. A.
Kofke
, and
J. R.
Errington
,
J. Chem. Phys.
119
,
3405
(
2003
).
30.
L.
Li
,
F.
Sun
,
Z.
Chen
,
L.
Wang
, and
J.
Cai
,
J. Chem. Phys.
141
,
054905
(
2014
).
31.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
103
,
4508
(
1999
).
32.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
102
,
2569
(
1998
).
33.
34.
J.
Pérez-Pellitero
,
P.
Ungerer
,
G.
Orkoulas
, and
A. D.
Mackie
,
J. Chem. Phys.
125
,
054515
(
2006
).
35.
A. Z.
Panagiotopoulos
,
Essential Thermodynamics
(
Drior Press
,
Princeton
,
2011
).
36.
A.
Pelissetto
and
E.
Vicari
,
Phys. Rep.
368
,
549
(
2002
).
37.
M. E.
Fisher
,
Rep. Prog. Phys.
30
,
615
(
1967
).
38.
S.
Patel
,
W. V.
Wilding
, and
R. L.
Rowley
,
J. Chem. Phys.
134
,
024101
(
2011
).
39.
D.
Duque
and
L. F.
Vega
,
J. Chem. Phys.
121
,
8611
(
2004
).
40.
A. M.
Ferrenberg
and
D. P.
Landau
,
Phys. Rev. B.
44
,
5081
(
1991
).
41.
N. B.
Wilding
and
A. D.
Bruce
,
J. Phys.: Condens. Matter
4
,
3087
(
1992
).
42.
J. H.
Chen
,
M. E.
Fisher
, and
B. G.
Nickel
,
Phys. Rev. Lett.
48
,
630
(
1982
).
43.
J. R.
Recht
and
A. Z.
Panagiotopoulos
,
Mol. Phys.
80
,
843
(
1993
).
44.
K. K.
Mon
and
K.
Binder
,
J. Chem. Phys.
96
,
6989
(
1992
).
45.
L.
Vega
,
E.
DeMiguel
,
L. F.
Rull
,
G.
Jackson
, and
I. A.
McLure
,
J. Chem. Phys.
96
,
2296
(
1992
).
46.
D.
Ambrose
and
C.
Tsonopoulos
,
J. Chem. Eng. Data
40
,
531
(
1995
).
47.
See supplementary material at http://dx.doi.org/10.1063/1.4930848 for tables listing the numerical data for the orthobaric densities and saturated vapor pressures.

Supplementary Material

You do not currently have access to this content.