Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of LixSi electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the LixSi alloys leads to significant strain recovery.

1.
U.
Kasavajjula
,
C.
Wang
, and
A. J.
Appleby
,
J. Power Sources
163
,
1003
(
2007
).
2.
J. P.
Maranchi
,
A. F.
Hepp
,
A. G.
Evans
,
N. T.
Nuhfer
, and
P. N.
Kumta
,
J. Electrochem. Soc.
153
,
A1246
(
2006
).
3.
H.
Wang
,
B.
Hou
,
X.
Wang
,
S.
Xia
, and
H. B.
Chew
,
Nano Lett.
15
,
1716
(
2015
).
4.
S. W.
Lee
,
M. T.
McDowell
,
L. A.
Berla
,
W. D.
Nix
, and
Y.
Cui
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
4080
(
2012
).
5.
X. H.
Liu
,
L.
Zhong
,
S.
Huang
,
S. X.
Mao
,
T.
Zhu
, and
J. Y.
Huang
,
ACS Nano
6
,
1522
(
2012
).
6.
J.
Graetz
,
C. C.
Ahn
,
R.
Yazami
, and
B.
Fultz
,
Electrochem. Solid-State Lett.
6
,
A194
(
2003
).
7.
T.
Takamura
,
S.
Ohara
,
M.
Uehara
,
J.
Suzuki
, and
K.
Sekine
,
J. Power Sources
129
,
96
(
2004
).
8.
V. A.
Sethuraman
,
M. J.
Chon
,
M.
Shimshak
,
V.
Srinivasan
, and
P. R.
Guduru
,
J. Power Sources
195
,
5062
(
2010
).
9.
V. A.
Sethuraman
,
V.
Srinivasan
,
A. F.
Bower
, and
P. R.
Guduru
,
J. Electrochem. Soc.
157
,
A1253
(
2010
).
10.
K. J.
Zhao
,
W. L.
Wang
,
J.
Gregoire
,
M.
Pharr
,
Z. G.
Suo
,
J. J.
Vlassak
, and
E.
Kaxiras
,
Nano Lett.
11
,
2962
(
2011
).
11.
K.
Zhao
,
G. A.
Tritsaris
,
M.
Pharr
,
W. L.
Wang
,
O.
Okeke
,
Z.
Suo
,
J. J.
Vlassak
, and
E.
Kaxiras
,
Nano Lett.
12
,
4397
(
2012
).
12.
A.
Kushima
,
J. Y.
Huang
, and
J.
Li
,
ACS Nano
6
,
9425
(
2012
).
13.
M. J.
Chon
,
V. A.
Sethuraman
,
A.
McCormick
,
V.
Srinivasan
, and
P. R.
Guduru
,
Phys. Rev. Lett.
107
,
045503
(
2011
).
14.
A. F.
Bower
,
P. R.
Guduru
, and
V. A.
Sethuraman
,
J. Mech. Phys. Solids
59
,
804
(
2011
).
15.
L.
Brassart
and
Z.
Suo
,
J. Mech. Phys. Solids
61
,
61
(
2013
).
16.
H. B.
Chew
,
B.
Hou
,
X.
Wang
, and
S.
Xia
,
Int. J. Solids Struct.
51
,
4176
(
2014
).
17.
A. J.
Morris
,
C. P.
Grey
, and
C. J.
Pickard
,
Phys. Rev. B
90
,
054111
(
2014
).
18.
V. L.
Chevrier
,
J. W.
Zwanziger
, and
J. R.
Dahn
,
J. Alloys Compd.
496
,
25
(
2010
).
19.
W. W.
Tipton
,
C. R.
Bealing
,
K.
Mathew
, and
R. G.
Hennig
,
Phys. Rev. B
87
,
184114
(
2013
).
20.
C. J.
Wen
and
R. A.
Huggins
,
J. Solid State Chem.
37
,
271
(
1981
).
21.
X. H.
Liu
,
J. W.
Wang
,
S.
Huang
,
F.
Fan
,
X.
Huang
,
Y.
Liu
,
S.
Krylyuk
,
J.
Yoo
,
S. A.
Dayeh
,
A. V.
Davydov
,
S. X.
Mao
,
S. T.
Picraux
,
S.
Zhang
,
J.
Li
,
T.
Zhu
, and
J. Y.
Huang
,
Nat. Nanotechnol.
7
,
749
(
2012
).
22.
J.
Li
and
J. R.
Dahn
,
J. Electrochem. Soc.
154
,
A156
(
2007
).
23.
V. B.
Shenoy
,
P.
Johari
, and
Y.
Qi
,
J. Power Sources
195
,
6825
(
2010
).
24.
C.-Y.
Chou
,
H.
Kim
, and
G. S.
Hwang
,
J. Phys. Chem. C
115
,
20018
(
2011
).
25.
P.
Johari
,
Y.
Qi
, and
V. B.
Shenoy
,
Nano Lett.
11
,
5494
(
2011
).
26.
B.
Hertzberg
,
J.
Benson
, and
G.
Yushin
,
Electrochem. Commun.
13
,
818
(
2011
).
27.
L. A.
Berla
,
S. W.
Lee
,
Y.
Cui
, and
W. D.
Nix
,
J. Power Sources
273
,
41
(
2015
).
28.
P. A.
O’Connell
and
G. B.
Mckenna
,
Encyclopedia of Polymer Science and Technology
, 3rd ed. (
John Wiley and Sons, Inc.
,
Hoboken, New Jersey
,
2004
).
29.
J.
Pan
,
Q.
Zhang
,
J.
Li
,
M. J.
Beck
,
X.
Xiao
, and
Y.-T.
Cheng
,
Nano Energy
13
,
192
(
2015
).
30.
L.
Pauling
,
The Nature of the Chemical–Bond and the Structure of Molecules and Crystals–An Introduction to Modern Structural Chemistry
(
Cornell University Press
,
1960
), Vol.
16
.
31.
A. L.
Gurson
,
J. Eng. Mater. Technol.
99
,
2
(
1977
).
You do not currently have access to this content.