One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree–Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree–Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard–Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga–Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

1.
2.
M.
Kertész
,
J.
Koller
, and
A.
Az̆man
,
J. Chem. Phys.
67
,
1180
(
1977
).
3.
M.
Kertész
,
J.
Koller
, and
A.
Az̆man
,
J. Chem. Phys.
68
,
2779
(
1978
).
4.
M.
Kertész
,
J.
Koller
, and
A.
Az̆man
,
Int. J. Quantum Chem.
18
,
645
(
1980
).
5.
6.
J.-L.
Calais
,
Int. J. Quantum Chem.
11
,
547
(
1977
).
7.
S.
Tomonaga
,
Prog. Theor. Phys.
5
,
544
(
1950
).
8.
J. M.
Luttinger
,
J. Math. Phys.
4
,
1154
(
1963
).
9.
F. D. M.
Haldane
,
J. Phys. C: Solid State Phys.
14
,
2585
(
1981
).
10.
A.
Chernenkaya
,
K.
Medjanik
,
P.
Nagel
,
M.
Merz
,
S.
Schuppler
,
E.
Canadell
,
J.-P.
Pouget
, and
G.
Schönhense
,
Eur. Phys. J. B
88
,
13
(
2015
).
11.
W. A.
Little
,
Phys. Rev.
134
,
A1416
(
1964
).
12.
P. W.
Anderson
,
P. A.
Lee
, and
M.
Saitoh
,
Solid State Commun.
13
,
595
(
1973
).
13.
P. W.
Anderson
,
Phys. Rev. Lett.
64
,
1839
(
1990
).
14.
J.
Ashkenazi
,
W. E.
Pickett
,
H.
Krakauer
,
C. S.
Wang
,
B. M.
Klein
, and
S. R.
Chubb
,
Phys. Rev. Lett.
62
,
2016
(
1989
).
15.
J.
Paloheimo
and
J.
von Boehm
,
Phys. Rev. B
46
,
4304
(
1992
).
16.
T.
Körzdörfer
,
R. M.
Parrish
,
J. S.
Sears
,
C. D.
Sherrill
, and
J.-L.
Brédas
,
J. Chem. Phys.
137
,
124305
(
2012
).
17.
X.
He
,
S.
Ryu
, and
S.
Hirata
,
J. Chem. Phys.
140
,
024702
(
2014
).
18.
S.
Kivelson
and
D. E.
Heim
,
Phys. Rev. B
26
,
4278
(
1982
).
19.
H.
Hayashi
and
K.
Nasu
,
Phys. Rev. B
32
,
31
(
1985
).
20.
H.
Shirakawa
and
S.
Ikeda
,
Polym. J.
2
,
231
(
1971
).
21.
M.
Tanaka
,
A.
Watanabe
, and
J.
Tanaka
,
Bull. Chem. Soc. Jpn.
53
,
3430
(
1980
).
22.
H.
Kuzmany
,
Phys. Status Solidi B
97
,
521
(
1980
).
23.
C. S.
Yannoni
and
T. C.
Clarke
,
Phys. Rev. Lett.
51
,
1191
(
1983
).
24.
H.
Takeuchi
,
T.
Arakawa
,
Y.
Furukawa
,
I.
Harada
, and
H.
Shirakawa
,
J. Mol. Struct.
158
,
179
(
1987
).
25.
C.
Castiglioni
,
J.
Lopez Navarrete
,
M.
Gussoni
, and
G.
Zerbi
,
J. Mol. Struct.
174
,
375
(
1988
).
26.
J. C. W.
Chien
,
Polyacetylene: Chemistry, Physics, and Material Science
(
Academic
,
Orlando
,
1984
).
27.
A. J.
Heeger
,
S.
Kivelson
,
J. R.
Schrieffer
, and
W.-P.
Su
,
Rev. Mod. Phys.
60
,
781
(
1988
).
28.
C.
Pisani
,
R.
Dovesi
, and
C.
Roetti
,
Hartree–Fock Ab Initio Treatment of Crystalline Systems
,
Lecture Notes in Chemistry
(
Springer-Verlag
,
1988
).
29.
R.
Dovesi
,
R.
Orlando
,
C.
Roetti
,
C.
Pisani
, and
V. R.
Saunders
,
Phys. Status Solidi B
217
,
63
(
2000
).
30.
J.
Delhalle
,
L.
Piela
,
J.-L.
Brédas
, and
J.-M.
André
,
Phys. Rev. B
22
,
6254
(
1980
).
31.
S.
Hirata
,
R.
Podeszwa
,
M.
Tobita
, and
R. J.
Bartlett
,
J. Chem. Phys.
120
,
2581
(
2004
).
32.
S.
Hirata
and
X.
He
,
J. Chem. Phys.
138
,
204112
(
2013
).
33.
W.
Kutzelnigg
and
D.
Mukherjee
,
J. Chem. Phys.
107
,
432
(
1997
).
34.
T.
Matsubara
,
Prog. Theor. Phys.
14
,
351
(
1955
).
35.
36.
G.
Sanyal
,
S. H.
Mandal
, and
D.
Mukherjee
,
Phys. Rev. E
48
,
3373
(
1993
).
37.
D.
Mukherjee
,
Chem. Phys. Lett.
274
,
561
(
1997
).
38.
L.
Kong
,
M.
Nooijen
, and
D.
Mukherjee
,
J. Chem. Phys.
132
,
234107
(
2010
).
39.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
).
40.
S. H.
Mandal
,
R.
Ghosh
,
G.
Sanyal
, and
D.
Mukherjee
,
Int. J. Mod. Phys. B
17
,
5367
(
2003
).
41.
G.
Sanyal
,
S. H.
Mandal
, and
D.
Mukherjee
,
Chem. Phys. Lett.
192
,
55
(
1992
).
42.
N. H.
March
,
W. H.
Young
, and
S.
Sampanthar
,
The Many-Body Problem in Quantum Mechanics
(
Cambridge University Press
,
1967
).
43.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
McGraw-Hill
,
New York
,
1971
).
44.
R. D.
Mattuck
,
A Guide to Feynman Diagrams in the Many-Body Problem
(
Dover
,
New York
,
1992
).
45.
D.
Jacquemin
and
C.
Adamo
,
J. Chem. Theory Comput.
7
,
369
(
2011
).
46.
G. E.
Scuseria
,
T. M.
Henderson
, and
D. C.
Sorensen
,
J. Chem. Phys.
129
,
231101
(
2008
).
47.
M.
Gell-Mann
and
K. A.
Brueckner
,
Phys. Rev.
106
,
364
(
1957
).
48.
A. W.
Overhauser
,
Phys. Rev.
128
,
1437
(
1962
).
49.
J.
Čížek
and
J.
Paldus
,
J. Chem. Phys.
47
,
3976
(
1967
).
50.
E.
Jeckelmann
and
D.
Baeriswyl
,
Synth. Met.
65
,
211
(
1994
).
51.
A.
Takahashi
,
Phys. Rev. B
54
,
7965
(
1996
).
52.
A. I.
Buzdin
and
L. N.
Bulaevskii
,
Sov. Phys. Usp.
23
,
409
(
1980
).
You do not currently have access to this content.