We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids.

1.
P.
Knowles
and
N.
Handy
,
Chem. Phys. Lett.
111
,
315
(
1984
).
2.
S. R.
White
,
Phys. Rev. Lett.
69
,
2863
(
1992
).
3.
S. R.
White
,
Phys. Rev. B
48
,
10345
(
1993
).
4.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
5.
6.
O.
Legeza
,
R. M.
Noack
,
J.
Sólyom
, and
L.
Tincani
, in
Computational Many-particle Physics
,
Lecture Notes in Physics
Vol.
739
, edited by
H.
Fehske
,
R.
Schneider
, and
A.
Weiße
(
Springer
,
Berlin Heidelberg
,
2008
), pp.
653
664
.
7.
K. H.
Marti
and
M.
Reiher
,
Phys. Chem. Chem. Phys.
13
,
6750
(
2011
).
8.
Y.
Kurashige
and
T.
Yanai
,
J. Chem. Phys.
130
,
234114
(
2009
).
9.
S. R.
White
and
R. L.
Martin
,
J. Chem. Phys.
110
,
4127
(
1999
).
10.
S.
Wouters
and
D.
Van Neck
,
Eur. Phys. J. D
68
,
272
(
2014
).
11.
D.
Zgid
and
M.
Nooijen
,
J. Chem. Phys.
128
,
014107
(
2008
).
12.
G. H.
Booth
,
A.
Gruneis
,
G.
Kresse
, and
A.
Alavi
,
Nature
493
,
365
(
2013
).
13.
R. J.
Bartlett
,
Ann. Rev. Phys. Chem.
32
,
32
(
1981
).
14.
W. D.
Laidig
and
R. J.
Bartlett
,
Chem. Phys. Lett.
104
,
424
(
1984
).
15.
W. D.
Laidig
,
P.
Saxe
, and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
887
(
1987
).
16.
R. F.
Fink
,
Chem. Phys. Lett.
428
,
461
(
2006
).
18.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons, Inc.
,
2000
).
19.
O.
Sinanoǧlu
,
J. Chem. Phys.
34
,
1237
(
1961
).
20.
E.
Hylleraas
,
Z. Phys.
65
,
209
(
1930
).
21.
G. K. L.
Chan
and
M.
Head-Gordon
,
J. Chem. Phys.
116
,
4462
(
2002
).
22.
S.
Sharma
and
G. K.-L.
Chan
,
J. Chem. Phys.
136
,
124121
(
2012
).
23.
S.
Sharma
,
J. Chem. Phys.
142
,
024107
(
2015
).
24.
S.
Sharma
and
G. K.-L.
Chan
,
J. Chem. Phys.
141
,
111101
(
2014
).
25.
F. A.
Evangelista
,
M.
Hanauer
,
A.
Köhn
, and
J.
Gauss
,
J. Chem. Phys.
136
,
204108
(
2012
).
26.
M.
Hanauer
and
A.
Köhn
,
J. Chem. Phys.
134
,
204111
(
2011
).
27.
K. R.
Shamasundar
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
135
,
054101
(
2011
).
28.
J.
Haegeman
 et al.,
Phys. Rev. Lett.
107
,
070601
(
2011
).
29.
S.
Wouters
,
N.
Nakatani
,
D.
Van Neck
, and
G. K.-L.
Chan
,
Phys. Rev. B
88
,
075122
(
2013
).
30.
N.
Nakatani
,
S.
Wouters
,
D.
Van Neck
, and
G. K.-L.
Chan
,
J. Chem. Phys.
140
,
024108
(
2014
).
31.
T.
Yanai
,
Y.
Kurashige
,
E.
Neuscamman
, and
G. K.-L.
Chan
,
J. Chem. Phys.
132
,
24105
(
2010
).
32.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
,
Int. Rev. Phys. Chem.
29
,
231
(
2010
).
33.
D.
Ghosh
,
J.
Hachmann
,
T.
Yanai
, and
G. K. L.
Chan
,
J. Chem. Phys.
128
,
144117
(
2008
).
34.
D.
Zgid
and
M.
Nooijen
,
J. Chem. Phys.
128
,
144115
(
2008
).
35.
D. J.
Klein
,
J. Chem. Phys.
61
,
786
(
1974
).
36.
I.
Shavitt
and
L. T.
Redmon
,
J. Chem. Phys.
73
,
5711
(
1980
).
37.
B. H.
Brandow
,
Rev. Mod. Phys.
39
,
771
(
1967
).
38.
M.
Nooijen
and
J. G.
Snijders
,
Int. J. Quantum Chem.
48
,
15
(
1993
).
39.
T. D.
Kühner
and
S. R.
White
,
Phys. Rev. B
60
,
335
(
1999
).
40.
E.
Jeckelmann
,
Phys. Rev. B
66
,
045114
(
2002
).
41.
D.
Cleland
,
G. H.
Booth
,
C.
Overy
, and
A.
Alavi
,
J. Chem. Theory Comput.
8
,
4138
(
2012
).
42.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
43.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
44.
45.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
46.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
,
Chem. Phys. Lett.
350
,
297
(
2001
).
47.
W.
Purwanto
,
S.
Zhang
, and
H.
Krakauer
,
J. Chem. Phys.
142
,
064302
(
2015
).
48.
G.
Li Manni
,
D.
Ma
,
F.
Aquilante
,
J.
Olsen
, and
L.
Gagliardi
,
J. Chem. Theory Comput.
9
,
3375
(
2013
).
49.
Y.
Kurashige
and
T.
Yanai
,
J. Chem. Phys.
135
,
094104
(
2011
).
50.
D.
Zgid
,
D.
Ghosh
,
E.
Neuscamman
, and
G. K.-L.
Chan
,
J. Chem. Phys.
130
,
194107
(
2009
).
51.
T.
Müller
,
J. Phys. Chem. A
113
,
12729
(
2009
).
52.
C.
Angeli
,
B.
Bories
,
A.
Cavallini
, and
R.
Cimiraglia
,
J. Chem. Phys.
124
,
054108
(
2006
).
53.
P.
Celani
,
H.
Stoll
,
H.-J.
Werner
, and
P. J.
Knowles
,
Mol. Phys.
102
,
2369
(
2004
).
54.
H.
Dachsel
,
R. J.
Harrison
, and
D. A.
Dixon
,
J. Phys. Chem. A
103
,
152
(
1999
).
55.
M. M.
Goodgame
and
W. A.
Goddard
,
Phys. Rev. Lett.
54
,
661
(
1985
).
56.
K.
Andersson
,
B.
Roos
,
P.-A.
Malmqvist
, and
P.-O.
Widmark
,
Chem. Phys. Lett.
230
,
391
(
1994
).
57.
C. W.
Bauschlicher
and
H.
Partridge
,
Chem. Phys. Lett.
231
,
277
(
1994
).
58.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
59.
R.
Olivares-Amaya
 et al.,
J. Chem. Phys.
142
,
034102
(
2015
).
60.
Z.
Rolik
,
L.
Szegedy
,
I.
Ladjnszki
,
B.
Ladczki
, and
M.
Kllay
,
J. Chem. Phys.
139
,
094105
(
2013
).
61.
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
115
,
2945
(
2001
).
62.
G.
Carleo
,
F.
Becca
,
S.
Moroni
, and
S.
Baroni
,
Phys. Rev. E
82
,
046710
(
2010
).
63.
L. R.
Schwarz
,
G. H.
Booth
, and
A.
Alavi
,
Phys. Rev. B
91
,
045139
(
2015
).
64.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
65.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
132
,
041103
(
2010
).
You do not currently have access to this content.