A hybrid MP2:DFT (second-order Møller–Plesset perturbation theory–density functional theory) method that combines MP2 calculations for cluster models with DFT calculations for the full periodic structure is used to localize minima and transition structures for proton jumps at different Brønsted sites in different frameworks (chabazite, faujasite, ferrierite, and ZSM-5) and at different crystallographic positions of a given framework. The MP2 limit for the periodic structures is obtained by extrapolating the results of a series of cluster models of increasing size. A coupled-cluster (CCSD(T)) correction to MP2 energies is calculated for cluster models consisting of three tetrahedra. For the adsorption energies, this difference is small, between 0.1 and 0.9 kJ/mol, but for the intrinsic proton exchange barriers, this difference makes a significant (10.85 ± 0.25 kJ/mol) and almost constant contribution across different systems. The total values of the adsorption energies vary between 22 and 34 kJ/mol, whereas the total proton exchange energy barriers fall in the narrow range of 152–156 kJ/mol. After adding nuclear motion contributions (harmonic approximation, 298 K), intrinsic enthalpy barriers between 134 and 141 kJ/mol and apparent energy barriers between 105 and 118 kJ/mol are predicted for the different sites examined for the different frameworks. These predictions are consistent with experimental results available for faujasite, ferrierite, and ZSM-5.

1.
A.
Bhan
and
E.
Iglesia
,
Acc. Chem. Res.
41
,
559
(
2008
).
2.
R.
Gounder
and
E.
Iglesia
,
J. Am. Chem. Soc.
131
,
1958
(
2009
).
3.
G. J.
Kramer
and
R. A.
van Santen
,
J. Am. Chem. Soc.
117
,
1766
(
1995
).
4.
B.
Schoofs
,
J. A.
Martens
,
P. A.
Jacobs
, and
R. A.
Schoonheydt
,
J. Catal.
183
,
355
(
1999
).
5.
B.
Lee
,
J. N.
Kondo
,
F.
Wakabayashi
, and
K.
Domen
,
Catal. Lett.
59
,
51
(
1999
).
6.
A. G.
Stepanov
,
S. S.
Arzumanov
,
A. A.
Gabrienko
,
V. N.
Parmon
,
I. I.
Ivanova
, and
D.
Freude
,
ChemPhysChem
9
,
2559
(
2008
).
7.
J.
Sommer
,
D.
Habermacher
,
R.
Jost
,
A.
Sassi
,
A. G.
Stepanov
,
M. V.
Luzgin
,
D.
Freude
,
H.
Ernst
, and
J.
Martens
,
J. Catal.
181
,
265
(
1999
).
8.
S.
Borghèse
,
M.
Haouas
,
J.
Sommer
, and
F.
Taulelle
,
J. Catal.
305
,
130
(
2013
).
9.
M. J.
Truitt
,
S. S.
Toporek
,
R.
Rovira-Truitt
, and
J. L.
White
,
J. Am. Chem. Soc.
128
,
1847
(
2006
).
10.
G. J.
Kramer
,
R. A.
van Santen
,
C. A.
Emeis
, and
A. K.
Nowak
,
Nature (London)
363
,
529
(
1993
).
11.
E. M.
Evleth
,
E.
Kassab
, and
L. R.
Sierra
,
J. Phys. Chem.
98
,
1421
(
1994
).
12.
S. R.
Blaszkowski
,
A. P. J.
Jansen
,
M. A. C.
Nascimento
, and
R. A.
van Santen
,
J. Phys. Chem.
98
,
12938
(
1994
).
13.
T. N.
Truong
,
J. Phys. Chem. B
101
,
2750
(
1997
).
14.
J. M.
Vollmer
and
T. N.
Truong
,
J. Phys. Chem. B
104
,
6308
(
2000
).
15.
J. A.
Ryder
,
A. K.
Chakraborty
, and
A. T.
Bell
,
J. Phys. Chem. B
104
,
6998
(
2000
).
16.
A. M.
Vos
,
F.
De Proft
,
R. A.
Schoonheydt
, and
P.
Geerlings
,
Chem. Commun.
(
12
),
1108
(
2001
).
17.
M.
Sierka
and
J.
Sauer
,
J. Phys. Chem. B
105
,
1603
(
2001
).
18.
K.
Sukrat
,
D.
Tunega
,
A. A.
Aquino
,
H.
Lischka
, and
V.
Parasuk
,
Theor. Chem. Acc.
131
,
1
(
2012
).
19.
F.
Haase
and
J.
Sauer
,
Microporous Mesoporous Mater.
35-36
,
379
(
2000
).
20.
J.
Hafner
,
L.
Benco
, and
T.
Bucko
,
Top. Catal.
37
,
41
(
2006
).
21.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
22.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
5656
(
2005
).
23.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
24.
T.
Kerber
,
M.
Sierka
, and
J.
Sauer
,
J. Comput. Chem.
29
,
2088
(
2008
).
25.
S.
Svelle
,
C.
Tuma
,
X.
Rozanska
,
T.
Kerber
, and
J.
Sauer
,
J. Am. Chem. Soc.
131
,
816
(
2009
).
26.
C.
Tuma
and
J.
Sauer
,
Chem. Phys. Lett.
387
,
388
(
2004
).
27.
C.
Tuma
and
J.
Sauer
,
Phys. Chem. Chem. Phys.
8
,
3955
(
2006
).
28.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
29.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
30.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
31.
C.
Tuma
,
T.
Kerber
, and
J.
Sauer
,
Angew. Chem., Int. Ed.
49
,
4678
(
2010
);
C.
Tuma
,
T.
Kerber
, and
J.
Sauer
,
Angew. Chem.
122
,
4783
4786
(
2010
).
32.
N.
Hansen
,
T.
Kerber
,
J.
Sauer
,
A. T.
Bell
, and
F. J.
Keil
,
J. Am. Chem. Soc.
132
,
11525
(
2010
).
33.
See supplementary material at http://dx.doi.org/10.1063/1.4923086 for a complete description of the various cluster models used in the present study and for the results of the parameter fits.
34.
M.
Brändle
and
J.
Sauer
,
J. Am. Chem. Soc.
120
,
1556
(
1998
).
35.
P. A.
Vaughan
,
Acta Crystallogr.
21
,
983
(
1966
).
36.
A.
Alberti
and
A.
Martucci
,
J. Phys. Chem. C
114
,
7767
(
2010
).
37.
Y.
Yokomori
,
J.
Wachsmuth
, and
K.
Nishi
,
Microporous Mesoporous Mater.
50
,
137
(
2001
).
38.
M. E.
Franke
,
M.
Sierka
,
U.
Simon
, and
J.
Sauer
,
Phys. Chem. Chem. Phys.
4
,
5207
(
2002
).
39.
L. A.
Clark
,
M.
Sierka
, and
J.
Sauer
,
J. Am. Chem. Soc.
126
,
936
(
2004
).
40.
M.
Sierka
and
J.
Sauer
,
J. Chem. Phys.
112
,
6983
(
2000
).
41.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
42.
G. B.
Bachelet
,
D. R.
Hamann
, and
M.
Schluter
,
Phys. Rev. B
26
,
4199
(
1982
).
43.
CPMD version 3.7.2, Copyrights IBM Corp. (1990-2011) and MPI für Festkörperforschung, Stuttgart (1997-2001), http://cpmd.org.
44.
R. W.
Hockney
, “
The Potential Calculation and Some Applications
,” in
Methods of Computational Physics
,
Plasma Physics Vol. 9
, edited by
B.
Alder
,
S.
Fernback
, and
M.
Rotenberg
(
Academic Press, Inc.
,
New York
,
1970
), pp.
136
211
.
45.
C.
Hättig
,
J. Chem. Phys.
118
,
7751
(
2003
).
46.
C.
Hättig
,
A.
Hellweg
, and
A.
Köhn
,
Phys. Chem. Chem. Phys.
8
,
1159
(
2006
).
47.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
48.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
49.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
50.
C.
Hättig
,
Phys. Chem. Chem. Phys.
7
,
59
(
2005
).
51.
F.
Jensen
,
Theor. Chem. Acc.
113
,
267
(
2005
).
52.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
53.
S. F.
Boys
and
F. B.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
54.
H.-J.
Werner
,
P. J.
Knowles
,
R.
Lindh
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
G.
Rauhut
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
C.
Hampel
,
G.
Hetzer
,
A. W.
Lloyd
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklaß
,
P.
Palmieri
,
R.
Pitzer
,
U.
Schumann
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
, and
T.
Thorsteinsson
, molpro, version 2006.1, a package of ab initio programs, 2006, see http://www.molpro.net.
55.
S.
Sklenak
,
J.
Dědeček
,
C.
Li
,
B.
Wichterlová
,
V.
Gábová
,
M.
Sierka
, and
J.
Sauer
,
Angew. Chem., Int. Ed.
46
,
7286
(
2007
);
S.
Sklenak
,
J.
Dědeček
,
C.
Li
,
B.
Wichterlová
,
V.
Gábová
,
M.
Sierka
, and
J.
Sauer
,
Angew. Chem.
119
,
7424
7427
(
2007
).
56.
M. G.
Evans
and
N. P.
Polanyi
,
Trans. Faraday Soc.
34
,
11
(
1938
).
57.
G.
Piccini
,
M.
Alessio
,
J.
Sauer
,
Y.
Zhi
,
Y.
Liu
,
R.
Kolvenbach
,
A.
Jentys
, and
J. A.
Lercher
,
J. Phys. Chem. C
119
,
6128
(
2015
).
58.
H.
Papp
,
W.
Hinsen
,
N. T.
Do
, and
M.
Baerns
,
Thermochim. Acta
82
,
137
(
1984
).
59.
S.
Savitz
,
F.
Siperstein
,
R. J.
Gorte
, and
A. L.
Myers
,
J. Phys. Chem. B
102
,
6865
(
1998
).
60.
F.
Göltl
,
A.
Gruneis
,
T.
Bucko
, and
J.
Hafner
,
J. Chem. Phys.
137
,
114111
(
2012
).
61.
C. J.
Cramer
,
Essentials of Computational Chemistry–Theory and Models
(
Wiley
,
Chichester
,
2002
).

Supplementary Material

You do not currently have access to this content.