A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single “zoom-in” user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.

1.
Multiscale Modeling and Simulation of Composite Materials and Structures
, 6th ed., edited by
W.
Young
,
H.
David
, and
R.
Talreja
(
Springer
,
Chichester
,
2007
).
3.
D.
Nerukh
and
S.
Karabasov
,
J. Phys. Chem. Lett.
4
,
815
(
2013
).
4.
H.
Frauenfelder
,
G.
Chen
,
J.
Berendzen
,
P. W.
Fenimore
,
H.
Jansson
,
B. H.
McMahon
,
I. R.
Stroe
,
J.
Swenson
, and
R. D.
Young
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
5129
(
2009
).
5.
B.
West
,
F.
Brown
, and
F.
Schmid
,
Biophys. J.
96
,
101
(
2009
).
6.
R.
Lonsdale
,
S.
Rouse
,
M.
Sansom
, and
A.
Mulholland
,
PLoS Comput. Biol.
10
,
e1003714
(
2014
).
7.
P. M.
Kasson
and
V. S.
Pande
,
Pac. Symp. Biocomput.
15
,
260
(
2010
).
8.
D. S. D.
Larsson
,
L.
Liljas
, and
D.
van der Spoel
,
PLoS Comput. Biol.
8
(
5
),
e1002502
(
2012
).
9.
M.
Zink
and
H.
Grubmüller
,
Biophys. J.
98
(
4
),
687
695
(
2010
).
10.
E. G.
Flekkoy
,
G.
Wagner
, and
J.
Feder
,
Europhys. Lett.
52
,
271
(
2000
).
11.
A.
Asproulis
,
M.
Kalweit
, and
D.
Drikakis
,
Adv. Eng. Software
46
,
85
(
2012
).
12.
A.
Markesteijn
,
S.
Karabasov
,
A.
Scukins
,
D.
Nerukh
,
V.
Glotov
, and
V.
Goloviznin
,
Philos. Trans. R. Soc., A
372
,
20130379
(
2014
).
13.
S. O.
Connel
and
P.
Thompson
,
Phys. Rev. E
52
,
5792
(
1995
).
14.
E.
Kotsalis
,
J.
Walther
, and
P.
Koumoutsakos
,
Phys. Rev. E
76
,
016709
(
2007
).
15.
E.
Kotsalis
,
J.
Walther
,
E.
Kaxiras
, and
P.
Koumoutsakos
,
Phys. Rev. E
79
,
045701(R)
(
2009
).
16.
G.
De Fabritiis
,
R.
Delgado-Buscalioni
, and
P. V.
Coveney
,
Phys. Rev. Lett.
97
,
134501
(
2006
).
17.
X. B.
Nie
,
S. Y.
Chen
,
W. N.
E
, and
M. O.
Robbins
,
J. Fluid Mech.
500
,
55
(
2004
).
18.
E.
Pavlov
,
M.
Taiji
,
A.
Scukins
,
A.
Markesteijn
,
S.
Karabasov
, and
D.
Nerukh
,
Faraday Discuss.
169
,
285
302
(
2014
).
19.
N.
Pasquale
,
D.
Marchisio
, and
P.
Carbone
,
J. Chem. Phys.
137
,
164111
(
2012
).
20.
W. G.
Noid
,
J.
Chu
,
S. G.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H.
Andersen
,
J. Chem. Phys.
128
,
244114
(
2008
).
21.
F.
Muller-Plathe
,
Chem. Phys. Chem.
3
(
9
),
755
769
(
2002
).
22.
Y.-H.
Tang
and
G. E.
Karniadakis
,
Comput. Phys. Commun.
185
(
11
),
2809
2822
(
2014
).
23.
P. J.
Hoogerbrugge
and
A.
Koelman
,
Europhys. Lett.
19
(
3
),
155
(
2014
).
24.
P.
Espanol
,
Europhys. Lett.
40
,
631
(
1997
).
25.
H.
Wu
,
J.
Xu
,
S.
Zhang
, and
H.
Wen
,
IEIT J. Adapt. Dyn. Comput.
2011
(
2
),
26
32
.
26.
H. J. C.
Berendsen
 et al.,
Comput. Phys. Commun.
91
,
43
56
(
1995
).
27.
N.
Goga
,
S.
Costashe
, and
S.
Marrink
,
Mater. Plast.
46
(
1
),
53
(
2009
).
28.
N.
Goga
,
S.
Marrink
,
S. V.
Costache
, and
F.
Moldoveanu
, “
Multiscaling algorithms for molecular dynamics simulations with GROMACS
,” in
3rd Annual IEEE International Systems Conference
(
IEEE
,
2009
), pp.
350
353
.
29.
S. J.
Marrink
 et al.,
J. Phys. Chem. B
111
(
27
),
7812
(
2007
).
30.
F.
Buti
,
D.
Cacciagrano
,
F.
Corradini
,
E.
Merelli
, and
L.
Tesei
,
Procedia Comput. Sci.
1
,
827
(
2010
).
31.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
, and
G. A.
Voth
,
J. Phys. Chem. B
111
,
4116
4127
(
2007
).
32.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
,
J. Chem. Phys.
126
,
134902
(
2007
).
33.
R.
Potestio
,
S.
Fritsch
,
P.
Español
,
R.
Delgado-Buscalioni
,
K.
Kremer
,
R.
Everaers
, and
D.
Donadio
,
Phys. Rev. Lett.
110
,
108301
(
2013
).
34.
P.
Español
,
R.
Delgado-Buscalioni
,
R.
Everaers
,
R.
Potestio
,
D.
Donadio
, and
K.
Kremer
,
J. Chem. Phys.
142
,
064115
(
2015
).
35.
M. J.
Lighthill
,
Proc. R. Soc. A
222
,
564
587
(
1952
).
36.
M. E.
Goldstein
,
J. Fluid Mech.
488
,
315
333
(
2003
).
37.
M. E.
Goldstein
and
S. J.
Leib
,
J. Fluid Mech.
600
,
291
337
(
2008
).
38.
S. A.
Karabasov
,
Philos. Trans. R. Soc., A
368
,
3593
3608
(
2010
).
39.
S. E.
Buckley
and
M. C.
Leverett
,
Trans. AIME
146
,
107
116
(
1942
).
40.
A.
Scukins
,
D.
Nerukh
,
E.
Pavlov
,
S.
Karabasov
, and
A.
Markesteijn
, “
Multiscale molecular dynamics/hydrodynamics implementation of two dimensional ‘Mercedes Benz’ water model
,”
Eur. Phys. J. Spec. Topics
(published online).
41.
A.
Ben-Naim
,
J. Chem. Phys.
54
,
3682
(
1971
).
42.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics, Part 1
(
Elsevier
,
Amsterdam, The Netherlands
,
1980
).
43.
J. M.
Ortiz de Zárate
and
J. V.
Sengers
,
Hydrodynamic Fluctuations in Fluids and Fluid Mixtures
(
Elsevier
,
Amsterdam, The Netherlands
,
2006
).
44.
J. B.
Bell
,
A. L.
Garcia
, and
S. A.
Williams
,
Phys. Rev. E
76
,
016708
(
2007
).
45.
A.
Donev
,
E.
Vanden-Eijnden
,
A. L.
Garcia
, and
J. B.
Bell
,
Commun. Appl. Math. Comput. Sci.
5
(
2
),
149
(
2010
).
46.
A. P.
Markesteijn
,
S. A.
Karabasov
,
V. Yu.
Glotov
, and
V. M.
Golovznin
,
Comput. Methods Appl. Mech. Eng.
281
,
29
53
(
2014
).
47.
G.
De Fabritiis
,
M.
Serrano
,
R.
Delgado-Buscalioni
, and
P. V.
Coveney
,
Phys. Rev. E
75
,
026307
(
2007
).
48.
N. K.
Voulgarakis
and
J.-W.
Chu
,
J. Chem. Phys.
130
,
134111
(
2009
).
49.
J. C.
Ladd
,
Phys. Rev. Lett.
70
,
1339
1342
(
1993
).
50.
A. P.
Markesteijn
,
O. B.
Usta
,
I.
Ali
,
A. C.
Balazs
, and
J. M.
Yeomans
,
Soft Matter
5
,
4575
4579
(
2009
).
51.
F. B.
Usabiaga
,
J.
Bell
,
R.
Delgado-Buscalioni
,
A.
Donev
,
T.
Fai
,
B.
Griffith
, and
C.
Peskin
,
Multiscale Model. Simul.
10
(
4
),
1369
1408
(
2012
).
52.
J. H.
Irving
and
J. G.
Kirkwood
,
J. Chem. Phys.
18
,
817
(
1950
).
53.
A. P.
Markesteijn
,
R.
Hartkamp
,
S.
Luding
, and
J.
Westerweel
,
J. Chem. Phys.
136
,
134104
(
2012
).
54.
A. P.
Sunda
and
A.
Venkatnathan
,
Mol. Simul.
39
(
9
),
728
733
(
2013
).
55.
G.-J.
Guo
and
Y.-G.
Zhang
,
Mol. Phys.
99
(
4
),
283
289
(
2001
).
56.
G. S.
Fanourgakis
,
J. S.
Medina
, and
R.
Prosmiti
,
J. Phys. Chem. A
116
(
10
),
2564
2570
(
2012
).
57.
M. A.
González
and
J. L. F.
Abascal
,
J. Chem. Phys.
132
,
096101
(
2010
).
58.
B. Z.
Shang
,
N. K.
Voulgarakis
, and
J.-W.
Chua
,
J. Chem. Phys.
137
,
044117
(
2012
).
59.
S. A.
Nosé
,
Mol. Phys.
52
,
255
268
(
1984
).
60.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
1697
(
1985
).
61.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
(
12
),
1463
1472
(
1997
).
62.
A. P.
Markesteijn
and
S. A.
Karabasov
,
J. Comput. Phys.
258
,
137
164
(
2014
).
63.
S.
Karabasov
,
D.
Nerukh
,
A.
Hoekstra
,
B.
Chopard
, and
P. V.
Coveney
,
Philos. Trans. R. Soc., A
372
,
20130390
(
2014
).
You do not currently have access to this content.