Localized orbitals are representations of electronic structure, which are easier to interpret than delocalized, canonical orbitals. While unitary transformations from canonical orbitals into localized orbitals have long been known, existing techniques maximize localization without regard to coupling between orbitals. Especially in conjugated π spaces, orbitals are collapsed by unitary localization procedures into nonintuitive, strongly interacting units. Over-localization decreases interpretability, results in large values of interorbital coupling, and gives unmeaningful diagonal Fock energies. Herein, we introduce orbitals of intermediate localization that span between canonical and fully localized orbitals. To within a specified error, these orbitals preserve the diagonal nature of the Fock matrix while still introducing significant locality. In systems composed of molecular fragments, π spaces can be localized into weakly coupled units. Importantly, as the weakly coupled orbitals separate, highly coupled orbitals maintain their expected structure. The resulting orbitals therefore correspond well to chemical intuition and maintain accurate orbital energies, making this procedure unique among existing orbital localization techniques. This article focuses on the formation and physical analysis of orbitals that smoothly connect the known fully delocalized and fully localized limits.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
J. E.
Lennard-Jones
and
J. A.
Pople
,
Proc. R. Soc. A
202
,
166
(
1950
).
4.
S.
Lehtola
and
H.
Jonsson
,
J. Chem. Theory Comput.
10
,
642
649
(
2014
).
5.
S.
Lehtola
and
H.
Jonsson
,
J. Chem. Theory Comput.
9
,
5365
5372
(
2013
).
6.
G.
Knizia
,
J. Chem. Theory Comput.
9
,
4834
4843
(
2013
).
7.
A. J. W.
Thom
,
E. J.
Sundstrom
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
11
,
11297
11304
(
2009
).
8.
E.
Ramos-Cordoba
,
V.
Postils
, and
P.
Salvador
,
J. Chem. Theory Comput.
11
,
1501
(
2015
).
9.
I.-M.
Hoyvik
,
B.
Jansik
, and
P.
Jorgensen
,
J. Comput. Chem.
34
(
17
),
1456
1462
(
2013
).
10.
J. E.
Subotnik
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
123
,
114108
(
2005
).
11.
P. E.
Maslen
,
C.
Ochsenfeld
,
C. A.
White
, and
M.
Head-Gordon
,
J. Phys. Chem. A
102
,
2215
2222
(
1998
).
12.
C.
Edmiston
and
K.
Ruedenberg
,
Rev. Mod. Phys.
35
,
457
464
(
1963
).
13.
J.
Foster
and
S.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
14.
J.
Pipek
and
P. G.
Mezey
,
J. Chem. Phys.
90
,
4916
4926
(
1989
).
15.
J.
Foster
and
F.
Weinhold
,
J. Am. Chem. Soc.
102
,
7211
7218
(
1980
).
16.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
17.
A. E.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
83
,
1736
1740
(
1985
).
18.
F.
Weinhold
,
J. Comput. Chem.
33
,
2363
2379
(
2012
).
19.
A. D.
Clauss
,
M.
Ayoub
,
J. W.
Moore
,
C. R.
Landis
, and
F.
Weinhold
,
Chem. Educ. Res. Pract.
(2015, published online).
20.
X.
Cheng
and
R. P.
Steele
,
J. Chem. Phys.
141
,
104105
(
2014
).
21.
C. R.
Jacob
and
M.
Reiher
,
J. Chem. Phys.
130
,
084106
(
2009
).
22.
W.
E
,
T.
Li
, and
J.
Lu
,
Proc. Natl. Acad. Sci. U. S. A.
107
(
4
),
1273
1278
(
2010
).
23.
V.
Ozolins
,
R.
Lai
,
R.
Caflisch
, and
S.
Osher
,
Proc. Natl. Acad. Sci. U. S. A.
110
(
46
),
18368
18373
(
2013
).
24.
V.
Ozolins
,
R.
Lai
,
R.
Caflisch
, and
S.
Osher
,
Proc. Natl. Acad. Sci. U. S. A.
111
(
5
),
1691
1696
(
2014
).
25.
R.
Polly
,
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
Mol. Phys.
102
,
2311
(
2004
).
26.
L.
Peng
,
F. L.
Gu
, and
W.
Yang
,
Phys. Chem. Chem. Phys.
15
,
15518
(
2013
).
27.
N. J.
Mayhall
and
K.
Raghavachari
,
J. Chem. Theory Comput.
8
,
2669
2675
(
2012
).
28.
M. E.
Forance
,
J.
Lee
,
K.
Miyamoto
,
F. R.
Manby
, and
T. F.
Miller
III
,
J. Chem. Theory Comput.
11
(
2
),
568
580
(
2015
).
29.
Y.
Shu
,
E. G.
Hohenstein
, and
B. G.
Levine
,
J. Chem. Phys.
142
,
024102
(
2015
).
30.
P.
Pulay
,
Chem. Phys. Lett.
100
,
151
154
(
1983
).
31.
J. W.
Boughton
and
P.
Pulay
,
J. Comput. Chem.
14
(
6
),
736
740
(
1993
).
32.
J. E.
Subotnik
and
M.
Head-Gordon
,
J. Chem. Phys.
123
,
064108
(
2005
).
33.
N.
Flocke
and
R. J.
Bartlett
,
J. Chem. Phys.
121
(
22
),
10935
(
2004
).
34.
C.
Hampel
and
H.-J.
Werner
,
J. Chem. Phys.
104
(
16
),
6286
(
1996
).
35.
H.-J.
Werner
and
K.
Pflueger
,
Annu. Rep. Comput. Chem.
2
,
53
(
2006
).
36.
H.-J.
Werner
,
G.
Knizia
,
C.
Krause
,
M.
Schwilk
, and
M.
Dornbach
,
J. Chem. Theory Comput.
11
(
2
),
484
507
(
2015
).
37.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
38.
P. M.
Zimmerman
,
A. R.
Molina
, and
P.
Smereka
, “
Efficient optimization of localized orbitals
” (unpublished).
39.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
1377
(
1993
).
40.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J. W.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T. V.
Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Mol. Phys.
113
(
2
),
184
215
(
2015
).
41.
See the supplementary material at http://dx.doi.org/10.1063/1.4923084 for Figures S1-S3 describing the localization process in an ethylene dimer and butadiene.

Supplementary Material

You do not currently have access to this content.