In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein–Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl + CH3Cl → ClCH3 + Cl) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

1.
N.
Umeda
,
K.
Hirano
,
T.
Satoh
,
N.
Shibata
,
H.
Sato
, and
M.
Miura
,
J. Org. Chem.
76
,
13
(
2010
).
2.
L. A.
Munishkina
,
C.
Phelan
,
V. N.
Uversky
, and
A. L.
Fink
,
Biochemistry
42
,
2720
(
2003
).
3.
W. R.
Fawcett
,
G.
Liu
, and
T. E.
Kessler
,
J. Phys. Chem.
97
,
9293
(
1993
).
4.
C.
Reichardt
,
Chem. Rev.
94
,
2319
(
1994
).
5.
H.
Lin
and
D. G.
Truhlar
,
Annu. Rev. Phys. Chem.
53
,
467
(
2002
).
6.
D.
Frenkel
and
S.
Berend
, in
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
2001
), Vol.
1
.
7.
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
8.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
1990
).
9.
Molecular Theory of Solvation
,
Understanding Chemical Reactivity
, edited by
F.
Hirata
(
Kluwer-Springer
,
2004
).
10.
Continuum Solvation Models in Chemical Physics: From Theory to Applications
, edited by
B.
Mennucci
and
R.
Cammi
(
Wiley
,
2008
).
11.
J. J.
Howard
and
B. M.
Pettitt
,
J. Stat. Phys.
145
,
441
(
2011
).
12.
H.
Sato
,
Phys. Chem. Chem. Phys.
15
,
7450
(
2013
).
13.
T.
Morita
and
K.
Hiroike
,
Prog. Theor. Phys.
23
,
1003
(
1960
).
14.
S. J.
Singer
and
D.
Chandler
,
Mol. Phys.
55
,
621
(
1985
).
15.
S.
Ten-no
,
F.
Hirata
, and
S.
Kato
,
Chem. Phys. Lett.
214
,
391
(
1993
).
16.
S.
Ten-no
,
S.
Kato
, and
F.
Hirata
,
J. Chem. Phys.
100
,
7443
(
1994
).
17.
H.
Sato
,
F.
Hirata
, and
S.
Kato
,
J. Chem. Phys.
105
,
1546
(
1996
).
18.
D.
Yokogawa
,
H.
Sato
, and
S.
Sakaki
,
J. Chem. Phys.
126
,
244504
(
2007
).
19.
D.
Yokogawa
,
J. Chem. Phys.
138
,
164109
(
2013
).
20.
D.
Chandler
and
H. C.
Andersen
,
J. Chem. Phys.
57
,
1930
(
1972
).
21.
F.
Hirata
and
P. J.
Rossky
,
Chem. Phys. Lett.
83
,
329
(
1981
).
22.
F.
Hirata
,
P. J.
Rossky
, and
B. M.
Pettitt
,
J. Chem. Phys.
78
,
4133
(
1983
).
23.
24.
P. T.
Cummings
,
C. G.
Gray
, and
D. E.
Sullivan
,
J. Phys. A: Math. Gen.
14
,
1483
(
1981
).
25.
M.
Kinoshita
and
F.
Hirata
,
J. Chem. Phys.
106
,
5202
(
1997
).
26.
D.
Beglov
and
B.
Roux
,
J. Phys. Chem. B
101
,
7821
(
1997
).
27.
A.
Kovalenko
and
F.
Hirata
,
Chem. Phys. Lett.
290
,
237
(
1998
).
28.
D. J.
Sindhikara
and
F.
Hirata
,
J. Phys. Chem. B
117
,
6718
(
2013
), and the references therein.
29.
J.-F.
Truchon
,
B. M.
Pettitt
, and
P.
Labute
,
J. Chem. Theory Comput.
10
,
934
(
2014
), and the references therein.
30.
A.
Kovalenko
and
F.
Hirata
,
J. Chem. Phys.
110
,
10095
(
1999
).
31.
H.
Sato
,
A.
Kovalenko
, and
F.
Hirata
,
J. Chem. Phys.
112
,
9463
(
2000
).
32.
Q.
Du
and
D.
Wei
,
J. Phys. Chem. B
107
,
13463
(
2003
).
33.
N.
Yoshida
and
F.
Hirata
,
J. Comput. Chem.
27
,
453
(
2006
).
34.
N.
Minezawa
and
S.
Kato
,
J. Chem. Phys.
126
,
054511
(
2007
).
35.
S.
Aono
and
S.
Sakaki
,
J. Phys. Chem. B
116
,
13045
(
2012
).
36.
N.
Yoshida
and
S.
Kato
,
J. Chem. Phys.
113
,
4974
(
2000
).
37.
L.
Blum
and
A. J.
Torruella
,
J. Chem. Phys.
56
,
303
(
1972
).
38.
L.
Blum
,
J. Chem. Phys.
57
,
1862
(
1972
).
39.
L.
Blum
,
J. Chem. Phys.
58
,
3295
(
1973
).
40.
P. H.
Fries
and
G. N.
Patey
,
J. Chem. Phys.
82
,
429
(
1985
).
41.
P. G.
Kusalik
and
G. N.
Patey
,
Mol. Phys.
65
,
1105
(
1988
).
42.
P. G.
Kusalik
and
G. N.
Patey
,
J. Chem. Phys.
88
,
7715
(
1988
).
43.
J.
Richardi
,
P. H.
Fries
,
R.
Fischer
,
S.
Rast
, and
H.
Krienke
,
Mol. Phys.
93
,
925
(
1998
).
44.
J.
Richardi
,
P. H.
Fries
,
R.
Fischer
,
S.
Rast
, and
H.
Krienke
,
J. Mol. Liq.
73
,
465
(
1997
).
45.
J.
Richardi
,
C.
Millot
, and
P. H.
Fries
,
J. Chem. Phys.
110
,
1138
(
1999
).
46.
R.
Ishizuka
and
N.
Yoshida
,
J. Chem. Phys.
139
,
084119
(
2013
).
47.
D.
Yokogawa
,
H.
Sato
,
T.
Imai
, and
S.
Sakaki
,
J. Chem. Phys.
130
,
064111
(
2009
).
48.
D.
Yokogawa
,
H.
Sato
, and
S.
Sakaki
,
J. Mol. Liq.
147
,
112
(
2009
).
49.
K.
Hirano
,
D.
Yokogawa
,
H.
Sato
, and
S.
Sakaki
,
J. Phys. Chem. B
114
,
7935
(
2010
).
50.
K.
Kido
,
D.
Yokogawa
, and
H.
Sato
,
Chem. Phys. Lett.
531
,
223
(
2012
).
51.
K.
Kido
,
D.
Yokogawa
, and
H.
Sato
,
J. Chem. Phys.
137
,
024106
(
2012
).
52.
K.
Ishimura
,
K.
Kuramoto
,
Y.
Ikuta
, and
S.
Hyodo
,
J. Chem. Theory Comput.
6
,
1075
(
2010
); the algorithm developed in this paper is available in the open-source software “SMASH”, http://smash-qc.sourceforge.net/.
53.
C.
Reichardt
,
Solvents and Solvent Effects in Organic Chemistry
(
Wiley-VCH
,
2003
).
54.
A.
Kovalenko
and
F.
Hirata
,
J. Chem. Phys.
113
,
2793
(
2000
).
55.
T.
Imai
,
Y.
Harano
,
M.
Kinoshita
,
A.
Kovalenko
, and
F.
Hirata
,
J. Chem. Phys.
125
,
024911
(
2006
).
56.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. J.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
57.
M.
Dupuis
,
J.
Rys
, and
H. F.
King
,
J. Chem. Phys.
65
,
111
(
1976
).
58.
J.
Rys
,
M.
Dupuis
, and
H. F.
King
,
J. Comput. Chem.
4
,
154
(
1983
).
59.
T. H.
Dunning
,
J. Chem. Phys.
53
,
2823
(
1970
).
60.
H.
Sato
and
S.
Sakaki
,
J. Phys. Chem. A
108
,
1629
(
2004
).
61.
62.
S. E.
Huton
,
P. J.
Rossky
, and
D. A.
Zichi
,
J. Am. Chem. Soc.
111
,
5680
(
1989
).
63.
H.
Sato
and
S.
Sakaki
,
J. Phys. Chem. A
106
,
2300
(
2002
).
64.
A.
Ben-Naim
and
Y.
Marcus
,
J. Chem. Phys.
81
,
2016
(
1984
).
65.
C. H.
Reynolds
,
J. Chem. Inf. Model.
35
,
738
(
1995
).
66.
C. J.
Cramer
and
D. G.
Truhlar
,
J. Comput.-Aided Mol. Des.
6
,
629
(
1993
).
67.
C.
Amovilli
and
B.
Mennucci
,
J. Phys. Chem. B
101
,
1051
(
1997
).
68.
H.
Hu
,
Z.
Lu
,
J. M.
Parks
,
S. K.
Burger
, and
W.
Yang
,
J. Chem. Phys.
128
,
034105
(
2008
).
69.
W. N.
Olmstead
and
J. I.
Brauman
,
J. Am. Chem. Soc.
99
,
4219
(
1977
).
70.
J.
Chandrasekhar
,
S. F.
Smith
, and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
107
,
154
(
1985
).
71.
J.
Chandrasekhar
and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
107
,
2974
(
1985
).
72.
L.
Dang
,
V.
Branchadell
, and
T.
Zieglar
,
J. Am. Chem. Soc.
116
,
10645
(
1994
).
73.
T. N.
Truong
and
E. V.
Stefanovich
,
J. Phys. Chem.
99
,
14700
(
1995
).
74.
C. S.
Pomelli
and
J.
Tomasi
,
J. Phys. Chem. A
101
,
3561
(
1997
).
75.
G.
Vayner
,
K. N.
Houk
, and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
126
,
9054
(
2004
).
76.
H.
Freedman
and
T. N.
Truong
,
J. Phys. Chem. B
109
,
4726
(
2005
).
77.
D.
Ardura
,
R.
Ĺopez
, and
T. L.
Sordo
,
J. Phys. Chem. B
109
,
23618
(
2005
).
78.
D.
Casanova
,
S.
Gusarov
,
A.
Kovalenko
, and
T.
Ziegler
,
J. Chem. Theory Comput.
3
,
458
(
2007
).
79.
M.
Higashi
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
4
,
1032
(
2008
).
80.
P.
Su
,
W.
Wu
,
C. P.
Kelly
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
112
,
12761
(
2008
).
81.
Z.
Lu
and
Y.
Zhang
,
J. Chem. Theory Comput.
4
,
1237
(
2008
).
82.
H.
Nakano
and
T.
Yamamoto
,
J. Chem. Phys.
136
,
134107
(
2012
).
83.
H.
Nakano
and
T.
Yamamoto
,
J. Chem. Theory Comput.
9
,
188
(
2013
).
84.
Theoretical Aspects of Physical Organic Chemistry
, edited by
S. S.
Schaik
,
H. B.
Schlegel
, and
S.
Wolfe
(
Wiley
,
1992
).
You do not currently have access to this content.