Nucleation is studied in incompressible ternary fluids by examining the topology of the overall landscape of the energy surface. Minimum free energy paths for nucleation (MFEPs) of a single nucleus in an infinite matrix are computed with the string method in the framework of the continuum theory of nucleation for the regular solution. Properties of the critical nucleus are compared with the predictions of the classical nucleation theory. MFEPs are found to exhibit complex nucleation pathways with non-monotonic variations of compositions in the interfacial region, specifically adsorption of a component. In the symmetric regular solution, the minority component is found to segregate at the interface during nucleation with a concomitant depletion of the nucleus core, resulting in unpredicted partition of the non-selective component. Despite increasing the gradient energy, such inhomogeneity in composition is shown to lower the nucleation barrier.

1.
J. W.
Gibbs
,
Trans. Connecticut Acad. Sci.
3
(
108
),
343
(
1875–1878
);
J. W.
Gibbs
,
The Collected Works
(
Longmans Green
,
New York
,
1928
), Vol.
1
.
2.
J. D.
van der Waals
and
Ph.
Kohnstamm
,
Lehrbuch der Thermodynamik
(
Johann- Ambrosius-Barth
,
Leipzig
,
1908
).
3.
J. S.
Rowlinson
,
J. Stat. Phys.
20
,
197
(
1979
)
[translated by
J. D.
Van der Waals
,
Z. Phys. Chem.
13
,
657
(
1893
) (in German)].
4.
M.
Volmer
,
Kinetik der Phasenbildung
(
Steinkopff
,
Dresden
,
1939
).
5.
Y. I.
Frenkel
,
Kinetic Theory of Liquids
(
Oxford University Press
,
Oxford
,
1946
).
6.
Nucleation
, edited by
A. C.
Zettlemoyer
(
Marcel Dekker
,
New York
,
1969
).
7.
A. C.
Zettlemoyer
,
Adv. Colloid Interface Sci.
7
,
vii
(
1977
).
8.
J. D.
Gunton
,
M. S.
Miguel
, and
P. S.
Sahni
, in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic Press
,
London
,
1983
), Vol.
8
.
9.
V. P.
Skripov
,
Metastable Liquids
(Wiley, New York, 1974) [Nauka, Moscow, 1972 (in Russian)].
10.
R.
Becker
and
W.
Doring
,
Ann. Phys.
416
,
719
(
1935
).
11.
Zeldovich
,
J. Exp. Theor. Phys. USSR
12
,
525
(
1942
).
12.
D.
Turnbull
and
J. C.
Fisher
,
J. Chem. Phys.
17
,
71
(
1949
).
13.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
28
,
258
(
1959
).
14.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
31
,
688
(
1959
).
15.
F.
Schmitz
,
P.
Virnau
, and
K.
Binder
,
Phys Rev. E
87
,
053302
(
2013
).
16.
L.
Maragliano
,
A.
Fischer
,
E.
Vanden-Eijnden
, and
G.
Ciccotti
,
J. Chem. Phys.
125
,
024106
(
2006
).
17.
M.
Venturoli
,
E.
Vanden-Eijnden
, and
G.
Ciccotti
,
J. Math. Chem.
45
,
188
(
2009
).
18.
M. I.
Freidlin
and
A. D.
Wentzell
,
Random Perturbations of Dynamical Systems
(
Springer
,
New York, Verlag, Berlin
,
1984
).
19.
V. G.
Baidakov
,
G. S.
Boltashev
, and
J. W. P.
Schmelzer
,
J. Colloid Interface Sci.
231
,
312
(
2000
).
20.
J. W. P.
Schmelzer
,
J.
Schmelzer
, and
I.
Gutzow
,
J. Chem. Phys.
112
,
3820
(
2000
).
21.
T.
Philippe
and
D.
Blavette
,
Philos. Mag.
91
,
4606
4622
(
2011
).
22.
J. W. P.
Schmelzer
,
A. R.
Gokhman
, and
V. M.
Fokin
,
J. Colloid Interface Sci.
272
,
109
(
2004
).
23.
C. L.
Weakliem
and
H.
Reiss
,
J. Chem. Phys.
99
,
5374
(
1993
).
24.
H.
Trinkaus
,
Phys. Rev. B
27
,
7372
(
1983
).
25.
M.
Iwamatsu
,
J. Chem. Phys.
140
,
064702
(
2014
).
26.
T.
Philippe
and
P. W.
Voorhees
,
Acta Mater.
61
,
4237
(
2013
).
27.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
28.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
29.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
30.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
126
,
164103
(
2007
).
31.
M.
Iwamatsu
,
J. Chem. Phys.
130
,
244507
(
2009
).
32.
J. F.
Lutsko
,
J. Chem. Phys.
128
,
184711
(
2008
).
33.
J. F.
Lutsko
,
J. Chem. Phys.
129
,
244501
(
2008
).
34.
S. M.
Wood
and
Z.-G.
Wang
,
J. Chem. Phys.
116
,
2289
(
2002
).
35.
C.-Z.
Zhang
and
Z.-G.
Wang
,
Phys. Rev. E
77
,
021906
(
2008
).
36.
C.
Qiu
,
T.
Qian
, and
W.
Ren
,
J. Chem. Phys.
129
,
154711
(
2008
).
37.
X.
Cheng
,
L.
Lin
,
W. E. P.
Zhang
, and
A.-C.
Shi
,
Phys. Rev. Lett.
104
,
148301
(
2010
).
38.
R.
Backofen
and
A.
Voigt
,
J. Phys.: Condens. Matter
22
,
364104
(
2010
).
39.
Q.
Du
and
L.
Zhang
,
Commun. Math. Sci.
7
,
1039
(
2009
).
40.
L.
Zhang
,
L. Q.
Chen
, and
Q.
Du
,
J. Comp. Phys.
229
,
6574
(
2010
).
41.
T.
Philippe
and
D.
Blavette
,
Scripta Mater.
67
,
77
80
(
2012
).
42.
T.
Philippe
and
D.
Blavette
,
J. Chem. Phys.
135
,
134508
(
2011
).
43.
44.
Y.
Li
and
W.
Ren
,
Langmuir
30
,
9567
9576
(
2014
).
45.
J. J.
Hoyt
,
Acta Metall. Mater.
38
,
1405
1412
(
1990
).
46.
D.
DeFontaine
, “
A computer simulation of the evolution of coherent composition variations in solid solutions
,” Ph.D. thesis (
Northwestern University
,
1967
).
47.
D. A.
Cogswell
, “
A phase-field study of ternary multiphase microstructures
,” Ph.D. thesis (
MIT
,
2010
).
48.
L.-Q.
Chen
,
Acta metal. mater.
42
,
3503
3513
(
1994
).
49.
C.
Huang
,
M.
Olvera de la Cruz
, and
B. W.
Swift
,
Macromolecules
28
,
7996
8005
(
1995
).
50.
C.
Huang
,
M.
Olvera de la Cruz
, and
P. W.
Voorhees
,
Acta Mater.
47
,
4449
4459
(
1999
).
51.
T.
Philippe
,
D.
Blavette
, and
P. W.
Voorhees
,
J. Chem. Phys.
141
,
124306
(
2014
).
You do not currently have access to this content.