The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f9)(6s2)(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f10)(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T0 = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f9)(6s)(6p), but these configurations are not consistent with the large Re’s (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f10)(6p3/2,1/2), (4f10)(6p3/2,3/2), and (4f9)(6s)(6p3/2,1/2) at around 3 eV. The former two states have larger Re (3.88 a.u.) than the third, so that it is reasonable to assign (4f10)(6p3/2,1/2) to [19.3]8.5 and (4f10)(6p3/2,3/2) to [20.3]8.5.

1.
D. N.
Woodruff
,
R. E. P.
Winpenny
, and
R. A.
Layfield
,
Chem. Rev.
113
,
5110
(
2013
).
2.
K. F.
Zmbov
and
J. L.
Margrave
,
J. Phys. Chem.
70
,
3379
(
1966
).
3.
M. C.
McCarthy
,
J. C.
Bloch
,
R. W.
Field
, and
L. A.
Kaledin
,
J. Mol. Spectrosc.
179
,
253
(
1996
).
4.
A. L.
Kaledin
,
M. C.
Heaven
,
R. W.
Field
, and
L. A.
Kaledin
,
J. Mol. Spectrosc.
179
,
310
(
1996
).
5.
L. A.
Kaledin
,
R. T.
Holbrook
, and
J. A.
Kunc
,
J. Appl. Phys.
83
,
3499
(
1998
).
6.
L. A.
Kaledin
,
M. C.
Heaven
, and
R. W.
Field
,
J. Mol. Spectrosc.
193
,
285
(
1999
).
7.
I.
Gotkis
,
J. Phys. Chem.
95
,
6086
(
1991
).
8.
M.
Dolg
and
H.
Stoll
,
Theor. Chim. Acta
75
,
369
(
1989
).
9.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
10.
J.
Saloni
,
S.
Roszak
,
K.
Hilpert
,
M.
Miller
, and
J.
Leszczynski
,
Eur. J. Inorg. Chem.
2004
,
1212
.
11.
Y.
Wasada-Tsutsui
,
Y.
Watanabe
, and
H.
Tatewaki
,
Int. J. Quantum Chem.
109
,
1874
(
2009
).
12.
H. J. Aa.
Jensen
,
R.
Bast
,
T.
Saue
,
L.
Visscher
,
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
T.
Fleig
,
O.
Fossgaard
,
A. S. P.
Gomes
,
T.
Helgaker
,
J. K.
Lærdahl
,
Y. S.
Lee
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
C. V.
Larsen
,
H. S.
Nataraj
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
J.
Sikkema
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van stralen
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
, DIRAC, a relativisticab initioelectronic structure program, release DIRAC12, 2012, http://www.diracprogram.org.
13.
P. J.
Knowles
and
N. C.
Handy
,
Chem. Phys. Lett.
111
,
315
(
1984
).
14.
T.
Fleig
,
J.
Olsen
, and
C. M.
Marian
,
J. Chem. Phys.
114
,
4775
(
2001
).
15.
T.
Fleig
,
J.
Olsen
, and
L.
Visscher
,
J. Chem. Phys.
119
,
2963
(
2003
).
16.
T.
Fleig
,
H. J. Aa.
Jensen
,
J.
Olsen
, and
L.
Visscher
,
J. Chem. Phys.
124
,
104106
(
2006
).
17.
S.
Knecht
,
H. J. Aa.
Jensen
, and
T.
Fleig
,
J. Chem. Phys.
128
,
014108
(
2008
).
18.
S.
Knecht
,
H. J. Aa.
Jensen
, and
T.
Fleig
,
J. Chem. Phys.
132
,
014108
(
2010
).
19.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
20.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. Aa.
Jensen
,
J. Chem. Phys.
89
,
2185
(
1988
).
21.
L.
Visscher
and
W. C.
Nieuwpoort
,
Theor. Chim. Acta
88
,
447
(
1994
).
22.
R. J.
Buenker
,
S. D.
Peyerimhoff
, and
W.
Butscher
,
Mol. Phys.
35
,
771
(
1978
).
23.
A. S. P.
Gomes
,
L.
Visscher
, and
K. G.
Dyall
,
Theor. Chem. Acc.
127
,
369
(
2010
).
24.
K.
Ruedenberg
,
R. C.
Raffenetti
, and
R. D.
Bardo
, in
Energy, Structure, and Reactivity: Proceedings of the 1972 Boulder Summer Research Conference on Theoretical Chemistry
, edited by
D. W.
Smith
and
W. B.
McRae
(
Wiley, New York
,
1973
), pp.
164
169
.
25.
N.
Koga
,
H.
Tatewaki
, and
O.
Matsuoka
,
J. Chem. Phys.
115
,
3561
(
2001
).
26.
J.
Andzelm
,
M.
Kłobukowski
,
E.
Radio-Andzelm
,
Y.
Sakai
, and
H.
Tatewaki
, in
Gaussian Basis Sets for Molecular Calculations
, edited by
S.
Huzinaga
(
Elsevier
,
Amsterdam
,
1984
).
27.
Y. S.
Lee
and
A. D.
McLean
,
J. Chem. Phys.
76
,
735
(
1982
).
28.
Y.
Ishikawa
,
R. C.
Binning
, Jr.
, and
K. M.
Sando
,
Chem. Phys. Lett.
101
,
111
(
1983
).
29.
R. E.
Stanton
and
S.
Havriliak
,
J. Chem. Phys.
81
,
1910
(
1984
).
30.
N.
Rösch
,
Chem. Phys.
80
,
1
(
1983
).
31.
T.
Saue
and
H. J. Aa.
Jensen
,
J. Chem. Phys.
111
,
6211
(
1999
).
32.
T.
Saue
and
H. J. Aa.
Jensen
, “
Quaternion symmetry of the Dirac equation
,”
Mathematical Models and Methods for Ab Initio Quantum Chemistry
,
Lecture Notes in Chemistry
Vol.
74
, edited by
M.
Defranceschi
and
C.
Le Bris
(
Springer
,
Berlin
,
2000
), pp.
227
-
246
.
33.
K. G.
Dyall
and
K.
Faegri
, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
New York
,
2007
).
34.
H.
Moriyama
,
H.
Tatewaki
, and
S.
Yamamoto
,
J. Chem. Phys.
138
,
224310
(
2013
).
35.
H.
Tatewaki
,
S.
Yamamoto
, and
H.
Moriyama
, “
Low-lying excited states of lanthanide diatomics studied by four-component relativistic configuration interaction methods
,” in
Computational Methods in Lanthanide and Actinide Chemistry
, edited by
M.
Dolg
(
Wiley
,
2015
).
36.
Y.
Hatano
,
S.
Yamamoto
, and
H.
Tatewaki
,
J. Comput. Chem.
26
,
325
(
2005
).
37.
H.
Wasada
and
Y.
Tsutsui
,
Bull. Fac. Gen. Edu., Gifu Univ.
33
,
145
(
1996
).
38.
See supplementary material at http://dx.doi.org/10.1063/1.4913631 for contour maps of spinors (KP #26(unit 1, j̆), #39(unit 1, j̆), #40(unit 1)),f-shell omega decomposition table, list of dominant configurations in the GASCI(8|125) wavefunction, and list of dominant configurations in the GASCI(7|4|122) wavefunction. The quaternion unit 1 belongs to the A1irreducible representation of C2v, and the unit j̆ to B1. The coordinates of the maps run from −8.0 a.u. to +8.0 a.u. The contour values are ±0.0125, ±0.025, ±0.05, ±0.1, ±0.2.
39.
G.
Karlström
,
R.
Lindh
,
P.-Å
Malmqvist
,
B. O.
Roos
,
U.
Ryde
,
V.
Veryazov
,
P.-O.
Widmark
,
M.
Cossi
,
B.
Schimmelpfennig
,
P.
Neogrady
, and
L.
Seijo
,
Comput. Mater. Sci.
28
,
222
(
2003
).
40.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
41.
S.
Yamamoto
and
H.
Tatewaki
,
J. Chem. Phys.
134
,
164310
(
2011
).
42.
S.
Yamamoto
and
H.
Tatewaki
,
Comput. Theor. Chem.
980
,
37
(
2012
).
43.
S.
Yamamoto
,
H.
Tatewaki
, and
H.
Moriyama
,
Theor. Chem. Acc.
131
,
1230
(
2012
).
44.
R. W.
Field
,
Ber. Bunsenges. Phys. Chem.
86
,
771
(
1982
).
45.
J. C.
Bloch
,
M. C.
McCarthy
,
R. W.
Field
, and
L. A.
Kaledin
,
J. Mol. Spectrosc.
177
,
251
(
1996
).
46.
L. A.
Kaledin
,
J. C.
Bloch
,
M. C.
McCarthy
,
E. A.
Shenyavskaya
, and
R. W.
Field
,
J. Mol. Spectrosc.
176
,
148
(
1996
).
47.
H.
Lefebvre-Brion
and
R. W.
Field
,
The Spectra and Dynamics of Diatomic Molecules
(
Elsevier
,
Amsterdam
,
2004
).

Supplementary Material

You do not currently have access to this content.