The nature of chemical bonds in heavy main-group diatomics is discussed from the viewpoint of effective bond orders, which are computed from spin–orbit wave functions resulting from spin–orbit configuration interaction calculations. The reliability of the relativistic correlated wave functions obtained in such two-step spin–orbit coupling frameworks is assessed by benchmark studies of the spectroscopic constants with respect to either experimental data, or state-of-the-art fully relativistic correlated calculations. The I2, At2, IO+, and AtO+ species are considered, and differences and similarities between the astatine and iodine elements are highlighted. In particular, we demonstrate that spin–orbit coupling weakens the covalent character of the bond in At2 even more than electron correlation, making the consideration of spin–orbit coupling compulsory for discussing chemical bonding in heavy (6p) main group element systems.

1.
K. G.
Dyall
and
K.
Faegri
, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
New York
,
2007
).
2.
B. O.
Roos
,
A. C.
Borin
, and
L.
Gagliardi
,
Angew. Chem., Int. Ed.
46
,
1469
(
2007
).
3.
R. F. W.
Bader
,
Chem. Rev.
91
,
893
(
1991
).
4.
J.
Pilmé
,
E.
Renault
,
F.
Bassal
,
M.
Amaouch
,
G.
Montavon
, and
N.
Galland
,
J. Chem. Theory Comput.
10
,
4830
(
2014
).
5.
A.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
6.
B.
Silvi
and
A.
Savin
,
Nature
371
,
683
(
1994
).
7.
M.
Kohout
and
A.
Savin
,
Int. J. Quantum Chem.
60
,
875
(
1996
).
8.
F.
Feixas
,
E.
Matito
,
M.
Duran
,
M.
Solà
, and
B.
Silvi
,
J. Chem. Theory Comput.
6
,
2736
(
2010
).
9.
J.
Pilmé
,
E.
Renault
,
T.
Ayed
,
G.
Montavon
, and
N.
Galland
,
J. Chem. Theory Comput.
8
,
2985
(
2012
).
10.
11.
D. S.
Wilbur
,
Curr. Radiopharm.
1
,
144
(
2008
).
12.
S.
Rothe
,
A. N.
Andreyev
,
S.
Antalic
,
A.
Borschevsky
,
L.
Capponi
,
T. E.
Cocolios
,
H.
De Witte
,
E.
Eliav
,
D. V.
Fedorov
,
V. N.
Fedosseev
,
D. A.
Fink
,
S.
Fritzche
,
L.
Ghys
,
M.
Huyse
,
N.
Imai
,
U.
Kaldor
,
Y.
Kudryavtsev
,
U.
Köster
,
J. F. W.
Lane
,
J.
Lassen
,
V.
Liberati
,
K. M.
Lynch
,
B. A.
Marsh
,
K.
Nishio
,
D.
Pauwels
,
V.
Pershina
,
L.
Popescu
,
T. J.
Procter
,
D.
Radulov
,
S.
Raeder
,
M. M.
Rajabali
,
E.
Rapisarda
,
R. E.
Rossel
,
K.
Sandhu
,
M. D.
Seliverstov
,
A. M.
Sjödin
,
P.
Van den Bergh
,
P.
Van Duppen
,
M.
Venhart
,
Y.
Wakabayashi
, and
K. D. A.
Wendt
,
Nat. Commun.
4
,
1835
(
2013
).
13.
J.
Champion
,
C.
Alliot
,
E.
Renault
,
B. M.
Mokili
,
M.
Chérel
,
N.
Galland
, and
G.
Montavon
,
J. Phys. Chem. A
114
,
576
(
2010
).
14.
A.
Sabatié-Gogova
,
J.
Champion
,
S.
Huclier
,
N.
Michel
,
F.
Pottier
,
N.
Galland
,
Z.
Asfari
,
M.
Chérel
, and
G.
Montavon
,
Anal. Chim. Acta
721
,
182
(
2012
).
15.
J.
Champion
,
A.
Sabatié-Gogova
,
F.
Bassal
,
T.
Ayed
,
C.
Alliot
,
N.
Galland
, and
G.
Montavon
,
J. Phys. Chem. A
117
,
1983
(
2013
).
16.
A.
Hermann
,
R.
Hoffmann
, and
N. W.
Ashcroft
,
Phys. Rev. Lett.
111
,
116404
(
2013
).
17.
J.
Champion
,
C.
Alliot
,
S.
Huclier
,
D.
Deniaud
,
Z.
Asfari
, and
G.
Montavon
,
Inorg. Chim. Acta
362
,
2654
(
2009
).
18.
J.
Champion
,
M.
Seydou
,
A.
Sabatié-Gogova
,
E.
Renault
,
G.
Montavon
, and
N.
Galland
,
Phys. Chem. Chem. Phys.
13
,
14984
(
2011
).
19.
C.
de Graaf
and
C.
Sousa
,
Int. J. Quantum Chem.
106
,
2470
(
2006
).
20.
R.
Maurice
,
R.
Bastardis
,
C.
de Graaf
,
N.
Suaud
,
T.
Mallah
, and
N.
Guihéry
,
J. Chem. Theory Comput.
5
,
2977
(
2009
).
21.
J.-B.
Rota
,
S.
Knecht
,
T.
Fleig
,
D.
Ganyushin
,
T.
Saue
,
F.
Neese
, and
H.
Bolvin
,
J. Chem. Phys.
135
,
114106
(
2011
).
22.
L. F.
Chibotaru
and
L.
Ungur
,
J. Chem. Phys.
137
,
064112
(
2012
).
23.
F.
Gendron
,
D.
Páez-Hernández
,
F.-P.
Notter
,
B.
Pritchard
,
H.
Bolvin
, and
J.
Autschbach
,
Chem. Eur. J.
20
,
7994
(
2014
).
24.
F.
Gendron
,
B.
Pritchard
,
H.
Bolvin
, and
J.
Autschbach
,
Inorg. Chem.
53
,
8577
(
2014
).
25.
M.
Reiher
and
A.
Wolf
,
Relativistic Quantum Chemistry
(
Wiley-VCH
,
Weinheim
,
2009
).
26.
B. A.
Hess
,
C. M.
Marian
, and
S. D.
Peyerimhoff
,
Modern Structure Theory Part I
,
Advanced Series in Physical Chemistry Vol. 2
(
World Scientific
,
Singapore
,
1995
), pp.
152
278
.
27.
F.
Rakowitz
and
C. M.
Marian
,
Chem. Phys.
225
,
223
(
1997
).
28.
V.
Vallet
,
L.
Maron
,
C.
Teichteil
, and
J.-P.
Flament
,
J. Chem. Phys.
113
,
1391
(
2000
).
29.
F.
Réal
,
V.
Vallet
,
J.-P.
Flament
, and
J.
Schamps
,
J. Chem. Phys.
125
,
174709
(
2006
).
30.
N.
Douglas
and
N. M.
Kroll
,
Ann. Phys.
82
,
89
(
1974
).
31.
32.
G.
Jansen
and
B. A.
Hess
,
Phys. Rev. A
39
,
6016
(
1989
).
33.
D. A.
Pantazis
,
X.-Y.
Chen
,
C. R.
Landis
, and
F.
Neese
,
J. Chem. Theory Comput.
4
,
908
(
2008
).
34.
D. A.
Pantazis
and
F.
Neese
,
Theor. Chem. Acc.
131
,
1292
(
2012
).
35.
R.
Ahlrichs
and
K.
May
,
Phys. Chem. Chem. Phys.
2
,
943
(
2000
).
36.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
37.
F.
Neese
, ORCA—AnAb Initio, Density Functional and Semiempirical Program Package, version 3.0.1, Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, 2013.
38.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
,
J. Phys. Chem. A
108
,
2851
(
2004
).
39.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
, and
M.
Wang
, molpro, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
40.
F.
Aquilante
,
L.
De Vico
,
N.
Ferré
,
G.
Ghigo
,
P.-Å.
Malmqvist
,
P.
Neogrády
,
T. B.
Pedersen
,
M.
Pitonak
,
M.
Reiher
,
B. O.
Roos
,
L.
Serrano-Andrés
,
M.
Urban
,
V.
Veryazov
, and
R.
Lindh
,
J. Comput. Chem.
31
,
224
(
2010
).
41.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
42.
B. O.
Roos
, in
Theory and Applications of Computational Chemistry: The First Forty Years
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
Amsterdam
,
2005
), Chap. 25, pp.
725
764
.
43.
A. S. P.
Gomes
,
F.
Réal
,
N.
Galland
,
C.
Angeli
,
R.
Cimiraglia
, and
V.
Vallet
,
Phys. Chem. Chem. Phys.
16
,
9238
(
2014
).
44.
B. A.
Hess
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
,
Chem. Phys. Lett.
251
,
365
(
1996
).
45.
F.
Neese
,
J. Chem. Phys.
122
,
034107
(
2005
).
46.
C.
Teichteil
,
M.
Pélissier
, and
F.
Spiegelmann
,
Chem. Phys.
81
,
273
(
1983
).
47.
R.
Llusar
,
M.
Casarrubios
,
Z.
Barandiarán
, and
L.
Seijo
,
J. Chem. Phys.
105
,
5321
(
1996
).
48.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
49.
K. G.
Dyall
,
J. Chem. Phys.
102
,
4909
(
1995
).
50.
“AMFI, an atomic mean-field integral program,” 1996, written by B. Schimmelpfennig.
51.
C.
Angeli
,
S.
Borini
,
M.
Cestari
, and
R.
Cimiraglia
,
J. Chem. Phys.
121
,
4043
(
2004
).
52.
“DIRAC, a relativistic ab initioelectronic structure program,” 2011, release DIRAC11, revision ab65b36, written by R. Bast, H. J. Aa. Jensen, T. Saue, and L. Visscher, with contributions from V. Bakken, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, T. Fleig, O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. K. Lærdahl, J. Henriksson, M. Iliaš, Ch. R. Jacob, S. Knecht, C. V. Larsen, H. S. Nataraj, P. Norman, G. Olejniczak, J. Olsen, J. K. Pedersen, M. Pernpointner, K. Ruud, P. Sałek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, and S. Yamamoto (see http://dirac.chem.vu.nl).
53.
Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions
, edited by
C. E.
Moore
and
J.
Gallagher
(
CRC Press
,
Boca Raton
,
1993
).
54.
E.
Luc-Koenig
,
C.
Morillon
, and
J.
Vergès
,
Phys. Scr.
12
,
199
(
1975
).
55.
T.
Fleig
and
A. J.
Sadlej
,
Phys. Rev. A
65
,
032506
(
2002
).
56.
I.
Kim
and
Y. S.
Lee
,
J. Chem. Phys.
139
,
134115
(
2013
).
57.
W. C.
Martin
and
C. H.
Corliss
,
J. Res. Natl. Bur. Stand., Sect. A
64
,
443
(
1960
).
58.
C.
Morillon
and
J.
Vergès
,
Phys. Scr.
12
,
145
(
1975
).
59.
C.
Morillon
and
J.
Vergès
,
Phys. Scr.
12
,
129
(
1975
).
60.
G. W.
Charles
,
J. Opt. Soc. Am.
56
,
1292
(
1966
).
61.
C.
Teichteil
and
M.
Pelissier
,
Chem. Phys.
180
,
1
(
1994
).
62.
L.
Visscher
and
K. G.
Dyall
,
J. Chem. Phys.
104
,
9040
(
1996
).
63.
O.
Fossgaard
,
O.
Gropen
,
M. C.
Valero
, and
T.
Saue
,
J. Chem. Phys.
118
,
10418
(
2003
).
64.
T.
Nakajima
and
K.
Hirao
,
J. Chem. Phys.
119
,
4105
(
2003
).
65.
A. V.
Mitin
and
C.
van Wüllen
,
J. Chem. Phys.
124
,
064305
(
2006
).
66.
S.
Höfener
,
R.
Ahlrichs
,
S.
Knecht
, and
L.
Visscher
,
ChemPhysChem
13
,
3952
(
2012
).
67.
K. P.
Huber
and
G.
Herzberg
,
Constants of Diatomic Molecules
(
Nostrand Reinhold
,
New York
,
1979
).
68.
See supplementary material at http://dx.doi.org/10.1063/1.4913738 for spectroscopic constants and effective bond orders computed with the SARC-DKH-TZVP basis sets.
69.
T.
Ayed
,
M.
Seydou
,
F.
Réal
,
G.
Montavon
, and
N.
Galland
,
J. Phys. Chem. B
117
,
5206
(
2013
).
70.
T.
Ayed
,
F.
Réal
,
G.
Montavon
, and
N.
Galland
,
J. Phys. Chem. B
117
,
10589
(
2013
).

Supplementary Material

You do not currently have access to this content.