The nature of chemical bonds in heavy main-group diatomics is discussed from the viewpoint of effective bond orders, which are computed from spin–orbit wave functions resulting from spin–orbit configuration interaction calculations. The reliability of the relativistic correlated wave functions obtained in such two-step spin–orbit coupling frameworks is assessed by benchmark studies of the spectroscopic constants with respect to either experimental data, or state-of-the-art fully relativistic correlated calculations. The I2, At2, IO+, and AtO+ species are considered, and differences and similarities between the astatine and iodine elements are highlighted. In particular, we demonstrate that spin–orbit coupling weakens the covalent character of the bond in At2 even more than electron correlation, making the consideration of spin–orbit coupling compulsory for discussing chemical bonding in heavy (6p) main group element systems.
Skip Nav Destination
,
,
,
,
,
Article navigation
7 March 2015
Research Article|
March 04 2015
Effective bond orders from two-step spin–orbit coupling approaches: The I2, At2, IO+, and AtO+ case studies
Rémi Maurice;
Rémi Maurice
a)
1SUBATECH, CNRS UMR 6457,
IN2P3/EMN Nantes/Université de Nantes
, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
Search for other works by this author on:
Florent Réal;
Florent Réal
2Laboratoire PhLAM, CNRS UMR 8523,
Université de Lille
, 59655 Villeneuve d’Ascq Cedex, France
Search for other works by this author on:
André Severo Pereira Gomes
;
André Severo Pereira Gomes
2Laboratoire PhLAM, CNRS UMR 8523,
Université de Lille
, 59655 Villeneuve d’Ascq Cedex, France
Search for other works by this author on:
Valérie Vallet
;
Valérie Vallet
2Laboratoire PhLAM, CNRS UMR 8523,
Université de Lille
, 59655 Villeneuve d’Ascq Cedex, France
Search for other works by this author on:
Gilles Montavon;
Gilles Montavon
1SUBATECH, CNRS UMR 6457,
IN2P3/EMN Nantes/Université de Nantes
, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
Search for other works by this author on:
Nicolas Galland
Nicolas Galland
3CEISAM, UMR CNRS 6230,
Université de Nantes
, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
Search for other works by this author on:
Rémi Maurice
1,a)
Florent Réal
2
André Severo Pereira Gomes
2
Valérie Vallet
2
Gilles Montavon
1
Nicolas Galland
3
1SUBATECH, CNRS UMR 6457,
IN2P3/EMN Nantes/Université de Nantes
, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
2Laboratoire PhLAM, CNRS UMR 8523,
Université de Lille
, 59655 Villeneuve d’Ascq Cedex, France
3CEISAM, UMR CNRS 6230,
Université de Nantes
, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
a)
Electronic mail: [email protected]
J. Chem. Phys. 142, 094305 (2015)
Article history
Received:
November 07 2014
Accepted:
February 17 2015
Citation
Rémi Maurice, Florent Réal, André Severo Pereira Gomes, Valérie Vallet, Gilles Montavon, Nicolas Galland; Effective bond orders from two-step spin–orbit coupling approaches: The I2, At2, IO+, and AtO+ case studies. J. Chem. Phys. 7 March 2015; 142 (9): 094305. https://doi.org/10.1063/1.4913738
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
DeePMD-kit v2: A software package for deep potential models
Jinzhe Zeng, Duo Zhang, et al.
CREST—A program for the exploration of low-energy molecular chemical space
Philipp Pracht, Stefan Grimme, et al.
Related Content
Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods
J. Chem. Phys. (February 2006)
Examining the heavy p-block with a pseudopotential-based composite method: Atomic and molecular applications of rp-ccCA
J. Chem. Phys. (December 2012)
Second-order electron-correlation and self-consistent spin-orbit treatment of heavy molecules at the basis-set limit
J. Chem. Phys. (March 2010)
Faraday rotation method improves the upper limit of the electron electric – dipole – moment sensitivity
J. Chem. Phys. (October 2024)