We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal to 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.

1.
K.
Burke
,
J. Chem. Phys.
136
,
150901
(
2012
).
2.
M. A. L.
Marques
and
E. K. U.
Gross
,
Annu. Rev. Phys. Chem.
55
,
427
(
2004
).
3.
T.
Ziegler
,
Chem. Rev.
91
,
651
(
1991
).
4.
C.
Sousa
,
S.
Tosoni
, and
F.
Illas
,
Chem. Rev.
113
,
4456
(
2013
).
5.
C.
Adamo
and
D.
Jacquemin
,
Chem. Soc. Rev.
42
,
845
(
2013
).
6.
P. E.
Siegbahn
and
M. R.
Blomberg
,
Annu. Rev. Phys. Chem.
50
,
221
(
1999
).
7.
J. P.
Perdew
,
AIP Conf. Proc.
577
,
1
(
2001
).
8.
J.
Tao
,
J.
Perdew
,
V.
Staroverov
, and
G.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
9.
E.
Van Lenthe
and
E. J.
Baerends
,
J. Comput. Chem.
24
,
1142
(
2003
).
10.
G. T.
Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
11.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
).
12.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
13.
K.
Hirose
,
T.
Ono
,
Y.
Fujimoto
, and
S.
Tsukamoto
,
First-Principles Calculations in Real-Space Formalism - Electronic Configurations and Transport Properties of Nanostructures
(
Imperial College Press
,
2005
).
14.
K.
Varga
and
J. A.
Driscoll
,
Computational Nanoscience: Applications for Molecules, Clusters, and Solids
, 1st edition (Cambridge University Press, 2011).
15.
T.
Beck
,
Rev. Mod. Phys.
72
,
1041
(
2000
).
16.
O.
Cohen
,
L.
Kronik
, and
A.
Brandt
,
J. Chem. Theory Comput.
9
,
4744
(
2013
).
17.
F.
Bottin
,
S.
Leroux
,
A.
Knyazev
, and
G.
Zérah
,
Comput. Mater. Sci.
42
,
329
(
2008
).
18.
E.
Di Napoli
and
M.
Berljafa
,
Comput. Phys. Commun.
184
,
2478
(
2013
).
19.
Y.
Zhou
and
Y.
Saad
,
Numer. Algorithms
47
,
341
(
2008
).
20.
E.
Hernández
,
M. J.
Gillan
, and
C. M.
Goringe
,
Phys. Rev. B
55
,
13485
(
1997
).
21.
L.
Genovese
,
T.
Deutsch
,
A.
Neelov
,
S.
Goedecker
, and
G.
Beylkin
,
J. Chem. Phys.
125
,
074105
(
2006
).
22.
K.
Cho
,
T.
Arias
,
J.
Joannopoulos
, and
P.
Lam
,
Phys. Rev. Lett.
71
,
1808
(
1993
).
23.
D.
Baye
,
Phys. Status Solidi B
243
,
1095
(
2006
).
24.
K.
Varga
and
S. T.
Pantelides
,
Phys. Status Solidi B
243
,
1110
(
2006
).
25.
D.
Baye
and
P.
Heenen
,
J. Phys. A: Math. Gen.
19
,
2041
(
1986
).
26.
D.
Baye
,
M.
Vincke
, and
M.
Hesse
,
J. Phys. B: At., Mol. Opt. Phys.
41
,
055005
(
2008
).
27.
M.
Hesse
and
D.
Baye
,
J. Phys. B: At., Mol. Opt. Phys.
36
,
139
(
2003
).
28.
D.
Baye
,
M.
Kruglanski
, and
M.
Vincke
,
Nucl. Phys. A
573
,
431
(
1994
).
29.
D.
Baye
,
Nucl. Phys. A
627
,
305
(
1997
).
30.
D.
Baye
,
J. Phys. B: At., Mol. Opt. Phys.
28
,
4399
(
1995
).
31.
D.
Baye
,
M.
Hesse
, and
M.
Vincke
,
Phys. Rev. E
65
,
026701
(
2002
).
32.
M.
Hesse
and
D.
Baye
,
J. Phys. B: At., Mol. Opt. Phys.
34
,
1425
(
2001
).
33.
D.
Baye
and
M.
Vincke
,
J. Phys. B: At., Mol. Opt. Phys.
24
,
3551
(
1991
).
34.
P.
Descouvemont
,
C.
Daniel
, and
D.
Baye
,
Phys. Rev. C
67
,
044309
(
2003
).
35.
M.
Vincke
,
L.
Malegat
, and
D.
Baye
,
J. Phys. B: At., Mol. Opt. Phys.
26
,
811
(
1993
).
36.
K.
Varga
,
Z.
Zhang
, and
S.
Pantelides
,
Phys. Rev. Lett.
93
,
176403
(
2004
).
37.
K.
Varga
,
Phys. Rev. B
83
,
195130
(
2011
).
38.
J. A.
Driscoll
and
K.
Varga
,
Phys. Rev. B
81
,
115412
(
2010
).
39.
S.
Bubin
and
K.
Varga
,
J. Phys.: Condens. Matter
22
,
465306
(
2010
).
40.
V. A.
Goncharov
and
K.
Varga
,
Phys. Rev. B
83
,
035118
(
2011
).
41.
Y.
Liu
,
D. A.
Yarne
, and
M. E.
Tuckerman
,
Phys. Rev. B
68
,
125110
(
2003
).
42.
H.-S.
Lee
and
M. E.
Tuckerman
,
J. Phys. Chem. A
110
,
5549
(
2006
).
43.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
44.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
45.
S. A.
Losilla
,
D.
Sundholm
, and
J.
Jusélius
,
J. Chem. Phys.
132
,
024102
(
2010
).
46.
J.
Jusélius
and
D.
Sundholm
,
J. Chem. Phys.
126
,
094101
(
2007
).
47.
H.-S.
Lee
and
M. E.
Tuckerman
,
J. Chem. Phys.
129
,
224108
(
2008
).
48.
G.
Beylkin
and
L.
Monzón
,
Appl. Comput. Harmon. Anal.
19
,
17
(
2005
).
49.
M. A. L.
Marques
,
M. J. T.
Oliveira
, and
T.
Burnus
,
Comput. Phys. Commun.
183
,
2272
(
2012
).
50.
M. A.
Heroux
,
E. T.
Phipps
,
A. G.
Salinger
,
H. K.
Thornquist
,
R. S.
Tuminaro
,
J. M.
Willenbring
,
A.
Williams
,
K. S.
Stanley
,
R. A.
Bartlett
,
V. E.
Howle
,
R. J.
Hoekstra
,
J. J.
Hu
,
T. G.
Kolda
,
R. B.
Lehoucq
,
K. R.
Long
, and
R. P.
Pawlowski
,
ACM Trans. Math. Software
31
,
397
(
2005
).
51.
P.
Arbenz
,
U. L.
Hetmaniuk
,
R. B.
Lehoucq
, and
R. S.
Tuminaro
,
Int. J. Numer. Methods Eng.
64
,
204
(
2005
).
52.
A. V.
Knyazev
,
SIAM J. Sci. Comput.
23
,
517
(
2001
).
53.
D. D.
Johnson
,
Phys. Rev. B
38
,
12807
(
1988
).
54.
A.
Baran
,
A.
Bulgac
,
M.
Forbes
,
G.
Hagen
,
W.
Nazarewicz
,
N.
Schunck
, and
M.
Stoitsov
,
Phys. Rev. C
78
,
014318
(
2008
).
55.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
56.
A. J.
Garza
and
G. E.
Scuseria
,
J. Chem. Phys.
137
,
054110
(
2012
).
57.
M. J.
Frisch
,
W. G.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
J. A. J.
Montgomery
,
T.
Vreven
,
K. N.
Kudin
,
J. C.
Burant
,
J. M.
Millam
,
S. S.
Iyengar
,
J.
Tomasi
,
V.
Barone
,
B.
Mennucci
,
M.
Cossi
,
G.
Scalmani
,
G. N.
Rega
,
A.
Petersson
,
H.
Nakatsuji
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
M.
Klene
,
X.
Li
,
J. E.
Knox
,
H. P.
Hratchian
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
P. Y.
Ayala
,
K.
Morokuma
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
V. G.
Zakrzewski
,
S.
Dapprich
,
A. D.
Daniels
,
M. C.
Strain
,
O.
Farkas
,
D. K.
Malick
,
A. D.
Rabuck
,
K.
Raghavachari
,
J. B.
Foresman
,
J. V.
Ortiz
,
Q.
Cui
,
A. G.
Baboul
,
S.
Clifford
,
J.
Cioslowski
,
B. B.
Stefanov
,
G.
Liu
,
A.
Liashenko
,
P.
Piskorz
,
I.
Komaromi
,
R. L.
Martin
,
D. J.
Fox
,
T.
Keith
,
M. A.
Al-Laham
,
C. Y.
Peng
,
A.
Nanayakkara
,
M.
Challacombe
,
P. M. W.
Gill
,
B.
Johnson
,
W.
Chen
,
M. W.
Wong
,
C.
Gonzalez
,
J. A.
Pople
,
G.W.T. M. J.
Frisch
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
J. A.
Montgomery
, Jr.
,
T.
Vreven
,
K. N.
Kudin
,
J. C.
Burant
,
J. M.
Millam
,
S. S.
Iyengar
,
J.
Tomasi
,
V.
Barone
,
B.
Mennucci
,
M.
Cossi
,
G.
Scalmani
,
N.
Rega
,
G. A.
Petersson
, and
H.
Nak
, gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
58.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
59.
A.
Willand
,
Y. O.
Kvashnin
,
L.
Genovese
,
Á.
Vázquez-Mayagoitia
,
A. K.
Deb
,
A.
Sadeghi
,
T.
Deutsch
, and
S.
Goedecker
,
J. Chem. Phys.
138
,
104109
(
2013
).
60.
M.
Krack
,
Theor. Chem. Acc.
114
,
145
(
2005
).
61.
T.
Kupka
,
B.
Ruscic
, and
R. E.
Botto
,
J. Phys. Chem. A
106
,
10396
(
2002
).
62.
A. P.
Gaiduk
,
I. G.
Ryabinkin
, and
V. N.
Staroverov
,
J. Chem. Theory Comput.
9
,
3959
(
2013
).
63.
D. P.
Chong
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
1760
(
2002
).
64.
M. E.
Mura
,
P. J.
Knowles
, and
C. A.
Reynolds
,
J. Chem. Phys.
106
,
9659
(
1997
).
65.
P. R. T.
Schipper
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
Theor. Chem. Acc.
98
,
16
(
1997
).
66.
M.
Tafipolsky
and
R.
Schmid
,
J. Chem. Phys.
124
,
174102
(
2006
).
67.
J.
Paier
,
R.
Hirschl
,
M.
Marsman
, and
G.
Kresse
,
J. Chem. Phys.
122
,
234102
(
2005
).
68.
Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 16a; see http://cccbdb.nist.gov/ (accessed October 2, 2014).
69.
C. W.
Bauschlicher
and
H.
Partridge
,
Chem. Phys. Lett.
240
,
533
(
1995
).
70.
J.
Martin
,
J. Chem. Phys.
108
,
2791
(
1998
).
71.
D.
Lee
,
F.
Furche
, and
K.
Burke
,
J. Phys. Chem. Lett.
1
,
2124
(
2010
).
72.
T.
Ono
and
K.
Hirose
,
Phys. Rev. Lett.
82
,
5016
(
1999
).
73.
T.
Ono
and
K.
Hirose
,
Phys. Rev. B
72
,
085115
(
2005
).
74.
See supplementary material at http://dx.doi.org/10.1063/1.4913569 for the basis-size dependence of energy convergence (kinetic, correlation, and total energies) and the complete data of DFT calculations for the G2-1 set.

Supplementary Material

You do not currently have access to this content.