A methodology based on time-resolved, phase-sensitive second harmonic generation (SHG) for probing the excited state dynamics of species at interfaces is presented. It is based on an interference measurement between the SHG from the sample and a local oscillator generated at a reference together with a lock-in measurement to remove the large constant offset from the interference. The technique is characterized by measuring the phase and excited state dynamics of the dye malachite green at the water/air interface. The key attributes of the technique are that the observed signal is directly proportional to sample concentration, in contrast to the quadratic dependence from non-phase sensitive SHG, and that the real and imaginary parts of the 2nd order non-linear susceptibility can be determined independently. We show that the method is highly sensitive and can provide high quality excited state dynamics in short data acquisition times.

1.
R. W.
Boyd
,
Nonlinear Optics
, 3rd ed. (
Elsevier Science
,
2008
).
2.
Y. R.
Shen
,
The Principles of Nonlinear Optics
(
Wiley-Interscience
,
2003
).
3.
Y. R.
Shen
,
Nature
337
(
6207
),
519
-
525
(
1989
).
4.
K. B.
Eisenthal
,
Chem. Rev.
96
(
4
),
1343
-
1360
(
1996
).
5.
G. L.
Richmond
,
Chem. Rev.
102
(
8
),
2693
-
2724
(
2002
).
6.
F. M.
Geiger
,
Annu. Rev. Phys. Chem.
60
(
1
),
61
-
83
(
2009
).
7.
A. M.
Jubb
,
W.
Hua
, and
H. C.
Allen
,
Annu. Rev. Phys. Chem.
63
(
1
),
107
-
130
(
2012
).
8.
D. M.
Sagar
,
C. D.
Bain
, and
J. R. R.
Verlet
,
J. Am. Chem. Soc.
132
(
20
),
6917
-
6919
(
2010
).
9.
R. K.
Chang
,
J.
Ducuing
, and
N.
Bloembergen
,
Phys. Rev. Lett.
15
(
1
),
6
-
8
(
1965
).
10.
Y. R.
Shen
,
Annu. Rev. Phys. Chem.
64
(
1
),
129
-
150
(
2013
).
11.
G.
Berkovic
,
Y. R.
Shen
,
G.
Marowsky
, and
R.
Steinhoff
,
J. Opt. Soc. Am. B
6
(
2
),
205
-
208
(
1989
).
12.
T.
Rasing
,
Y. R.
Shen
,
M. W.
Kim
, and
S.
Grubb
,
Phys. Rev. Lett.
55
(
26
),
2903
-
2906
(
1985
).
13.
H. W. K.
Tom
,
T. F.
Heinz
, and
Y. R.
Shen
,
Phys. Rev. Lett.
51
(
21
),
1983
-
1986
(
1983
).
14.
R.
Superfine
,
J. Y.
Huang
, and
Y. R.
Shen
,
Opt. Lett.
15
(
22
),
1276
-
1278
(
1990
).
15.
Q.
Du
,
E.
Freysz
, and
Y. R.
Shen
,
Phys. Rev. Lett.
72
(
2
),
238
-
241
(
1994
).
16.
V.
Ostroverkhov
,
G. A.
Waychunas
, and
Y. R.
Shen
,
Phys. Rev. Lett.
94
(
4
),
046102
(
2005
).
17.
N.
Ji
,
V.
Ostroverkhov
,
C. Y.
Chen
, and
Y. R.
Shen
,
J. Am. Chem. Soc.
129
(
33
),
10056
-
10057
(
2007
).
18.
N.
Ji
,
V.
Ostroverkhov
,
C. S.
Tian
, and
Y. R.
Shen
,
Phys. Rev. Lett.
100
(
9
),
096102
(
2008
).
19.
K. J.
Veenstra
,
A. V.
Petukhov
,
A. P.
de Boer
, and
T.
Rasing
,
Phys. Rev. B
58
(
24
),
16020
-
16023
(
1998
).
20.
P. T.
Wilson
,
Y.
Jiang
,
O. A.
Aktsipetrov
,
E. D.
Mishina
, and
M. C.
Downer
,
Opt. Lett.
24
(
7
),
496
-
498
(
1999
).
21.
S.
Yamaguchi
and
T.
Tahara
,
J. Chem. Phys.
129
(
10
),
101102
(
2008
).
22.
I. V.
Stiopkin
,
H. D.
Jayathilake
,
A. N.
Bordenyuk
, and
A. V.
Benderskii
,
J. Am. Chem. Soc.
130
(
7
),
2271
-
2275
(
2008
).
23.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Chem. Phys.
130
(
20
),
204704
(
2009
).
24.
H.
Watanabe
,
S.
Yamaguchi
,
S.
Sen
,
A.
Morita
, and
T.
Tahara
,
J. Chem. Phys.
132
(
14
),
144701
(
2010
).
25.
J. A.
Mondal
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Am. Chem. Soc.
132
(
31
),
10656
-
10657
(
2010
).
26.
W.
Hua
,
X. K.
Chen
, and
H. C.
Allen
,
J. Phys. Chem. A
115
(
23
),
6233
-
6238
(
2011
).
27.
A.
Kundu
,
S.
Yarnaguchi
, and
T.
Tahara
,
J. Phys. Chem. Lett.
5
(
4
),
762
-
766
(
2014
).
28.
R. E.
Pool
,
J.
Versluis
,
E. H. G.
Backus
, and
M.
Bonn
,
J. Phys. Chem. B
115
(
51
),
15362
-
15369
(
2011
).
29.
W.
Xiong
,
J. E.
Laaser
,
R. D.
Mehlenbacher
, and
M. T.
Zanni
,
Proc. Natl. Acad. Sci.
108
(
52
),
20902
-
20907
(
2011
).
30.
S.
Nihonyanagi
,
J. A.
Mondal
,
S.
Yamaguchi
, and
T.
Tahara
,
Annu. Rev. Phys. Chem.
64
(
1
),
579
-
603
(
2013
).
31.
K.
Watanabe
,
K.
Inoue
,
I. F.
Nakai
, and
Y.
Matsumoto
,
Phys. Rev. B
81
(
24
),
241408
(
2010
).
32.
S.
Nihonyanagi
,
P. C.
Singh
,
S.
Yamaguchi
, and
T.
Tahara
,
Bull. Chem. Soc. Jpn.
85
(
7
),
758
-
760
(
2012
).
33.
R.
Stolle
,
G.
Marowsky
,
E.
Schwarzberg
, and
G.
Berkovic
,
Appl. Phys. B: Lasers Opt.
63
(
5
),
491
-
498
(
1996
).
34.
See supplementary material at http://dx.doi.org/10.1063/1.4909522 for a consideration of the offset in the signal and the details of the calculation of the theoretical curves in Figure3.
35.
J. G.
Brainerd
,
A. G.
Jensen
, and
L. G.
Cumming
,
Proc. IRE
37
(
12
),
1378
-
1395
(
1949
).
36.
R. C.
Miller
and
W. A.
Nordland
,
Phys. Rev. B
2
(
12
),
4896
-
4902
(
1970
).
37.
N.
Bloembergen
and
P. S.
Pershan
,
Phys. Rev.
128
(
2
),
606
-
622
(
1962
).
38.
X.
Shi
,
E.
Borguet
,
A. N.
Tarnovsky
, and
K. B.
Eisenthal
,
Chem. Phys.
205
(
1-2
),
167
-
178
(
1996
).
39.
P.
Sen
,
S.
Yamaguchi
, and
T.
Tahara
,
Faraday Discuss.
145
,
411
-
428
(
2010
).
40.
K.
Kemnitz
,
K.
Bhattacharyya
,
J. M.
Hicks
,
G. R.
Pinto
,
K. B.
Eisenthal
, and
T. F.
Heinz
,
Chem. Phys. Lett.
131
(
4-5
),
285
-
290
(
1986
).

Supplementary Material

You do not currently have access to this content.