The slow processes of molecular dynamics (MD) simulations—governed by dominant eigenvalues and eigenfunctions of MD propagators—contain essential information on structures of and transition rates between long-lived conformations. Existing approaches to this problem, including Markov state models and the variational approach, represent the dominant eigenfunctions as linear combinations of a set of basis functions. However the choice of the basis functions and their systematic statistical estimation are unsolved problems. Here, we propose a new class of kinetic models called Markov transition models (MTMs) that approximate the transition density of the MD propagator by a mixture of probability densities. Specifically, we use Gaussian MTMs where a Gaussian mixture model is used to approximate the symmetrized transition density. This approach allows for a direct computation of spectral components. In contrast with the other Galerkin-type approximations, our approach can automatically adjust the involved Gaussian basis functions and handle the statistical uncertainties in a Bayesian framework. We demonstrate by some simulation examples the effectiveness and accuracy of the proposed approach.

1.
T.
Hansson
,
C.
Oostenbrink
, and
W.
van Gunsteren
,
Curr. Opin. Struct. Biol.
12
,
190
(
2002
).
2.
F.
Noé
,
S.
Doose
,
I.
Daidone
,
M.
Löllmann
,
M.
Sauer
,
J. D.
Chodera
, and
J. C.
Smith
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
4822
(
2011
).
3.
P.
Deuflhard
and
M.
Weber
,
Linear Algebra Appl.
398
,
161
(
2005
).
4.
M. A.
Rohrdanz
,
W.
Zheng
,
M.
Maggioni
, and
C.
Clementi
,
J. Chem. Phys.
134
,
124116
(
2011
).
5.
G.
Perez-Hernandez
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
,
J. Chem. Phys.
139
,
015102
(
2013
).
6.
S.
Kube
and
M.
Weber
,
J. Chem. Phys.
126
,
024103
(
2007
).
7.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
8.
N.
Djurdjevac
,
M.
Sarich
, and
C.
Schütte
, in
Proceedings of the International Congress of Mathematicians
(
World Scientific
,
Hyderabad
,
2010
), pp.
3105
3131
.
9.
F.
Noé
,
I.
Horenko
,
C.
Schütte
, and
J. C.
Smith
,
J. Chem. Phys.
126
,
155102
(
2007
).
10.
J. D.
Chodera
,
K. A.
Dill
,
N.
Singhal
,
V. S.
Pande
,
W. C.
Swope
, and
J. W.
Pitera
,
J. Chem. Phys.
126
,
155101
(
2007
).
11.
N.
Singhal
and
V. S.
Pande
,
J. Chem. Phys.
123
,
204909
(
2005
).
12.
N. V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
(
2008
).
13.
M.
Sarich
,
F.
Noé
, and
C.
Schütte
,
SIAM Multiscale Model. Simul.
8
,
1154
(
2010
).
14.
M.
Dellnitz
and
A.
Hohmann
,
Numer. Math.
75
,
293
(
1997
).
15.
M.
Dellnitz
and
O.
Junge
,
SIAM J. Numer. Anal.
36
,
491
(
1999
).
16.
C.
Hsu
,
Int. J. Bifurcation Chaos
2
,
727
(
1992
).
17.
J. A. W.
van der Spek
, “
Cell mapping methods: Modifications and extensions
,” Ph.D. thesis (
Technische Universiteit Eindhoven
,
1994
).
18.
A.
Baba
and
T.
Komatsuzaki
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
19297
(
2007
).
19.
P.
Schuetz
,
R.
Wuttke
,
B.
Schuler
, and
A.
Caflisch
,
J. Phys. Chem. B
114
,
15227
(
2010
).
20.
G.
Berezovska
,
D.
Prada-Gracia
,
S.
Mostarda
, and
F.
Rao
,
J. Chem. Phys.
137
,
194101
(
2012
).
21.
C.
Schütte
and
M.
Sarich
,
Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches
(
AMS
,
2013
), Vol.
24
.
22.
C. R.
Schwantes
and
V. S.
Pande
,
J. Chem. Theory Comput.
9
,
2000
(
2013
).
23.
C. R.
Shalizi
and
J. P.
Crutchfield
,
J. Stat. Phys.
104
,
817
(
2001
).
24.
C.-B.
Li
,
H.
Yang
, and
T.
Komatsuzaki
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
536
(
2008
).
25.
J. P.
Crutchfield
,
Nat. Phys.
8
,
17
(
2012
).
26.
F.
Noé
and
F.
Nüske
,
SIAM Multiscale Model. Simul.
11
,
635
(
2013
).
27.
F.
Nüske
,
B. G.
Keller
,
G.
Pérez-Hernández
,
A. S.
Mey
, and
F.
Noé
,
J. Chem. Theory Comput.
10
,
1739
(
2014
).
28.
See supplementary material at http://dx.doi.org/10.1063/1.4913214 for the comparison of different operator descriptions of Markov processes, proofs of propositions and implementation details of estimation methods.
29.
S. S.
Lafon
, “
Diffusion maps and geometric harmonics
,” Ph.D. thesis (
Yale University
,
2004
).
30.
R. R.
Coifman
and
S.
Lafon
,
Appl. Comput. Harmonic Anal.
21
,
5
(
2006
).
31.
G.
McLachlan
and
D.
Peel
,
Finite Mixture Models
(
Wiley
,
New York
,
2000
).
32.
H.
Snoussi
and
A.
Mohammad-Djafari
,
Bayesian Inference and Maximum Entropy Methods in Science and Engineering
,
AIP Conference Series
Vol.
617
, edited by
R.
Fry
(
AIP Publishing
,
2002
), pp.
36
46
;
H.
Snoussi
and
A.
Mohammad-Djafari
, arXiv:physics/0111007.
33.
F.
Noé
,
J. Chem. Phys.
128
,
244103
(
2008
).
34.
P.
Ascenzi
,
A.
Bocedi
,
M.
Bolognesi
,
A.
Spallarossa
,
M.
Coletta
,
R.
Cristofaro
, and
E.
Menegatti
,
Curr. Protein Pept. Sci.
4
,
231
(
2003
).
35.
D. E.
Shaw
,
P.
Maragakis
,
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
,
M. P.
Eastwood
,
J. A.
Bank
,
J. M.
Jumper
,
J. K.
Salmon
,
Y.
Shan
 et al.,
Science
330
,
341
(
2010
).
36.
F.
Noé
,
H.
Wu
,
J.-H.
Prinz
, and
N.
Plattner
,
J. Chem. Phys.
139
,
184114
(
2013
).

Supplementary Material

You do not currently have access to this content.