The dependences of the properties of linear, ring, star, and H-shaped polymer melts on architecture are investigated by nonequilibrium molecular dynamics simulations. We find that zero-shear viscosities η0 for various architectures follow a universal relation, η 0 = C η R g 0 2 , where Cη is a constant and R g 0 2 the equilibrium mean-square radius of gyration, in the unentangled regime. This law is also found valid for asymmetrical polymers but invalid for polymers with a hard core, such as stars with many arms and short arm lengths. In the unentangled regime, from the point of view of polymer size, the relaxation times show weak dependences on architecture, but the architecture dependence of the diffusion coefficient is still apparent. Then, we examine unentangled melts of various architectures having the same size over a wide range of shear rates covering linear and nonlinear viscoelastic regimes and find that the rheological quantities, namely, viscosity, first and second normal stress differences, are independent of architecture. In contrast, the polymer deformation shows an apparent dependence on architecture in the nonlinear regime. These findings shall shed significant light on the nature of rheological behaviors of unentangled melts.

1.
Dynamics of Polymeric Liquids, Fluid Mechanics
, 2nd ed., edited by
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
(
Wiley-Interscience
,
New York
,
1987
).
2.
The Theory of Polymer Dynamics
, edited by
M.
Doi
and
S. F.
Edwards
(
Clarendon Press
,
New York
,
1986
).
3.
M.
Kröger
and
S.
Hess
,
Phys. Rev. Lett.
85
,
1128
(
2000
).
4.
S. T.
Milner
and
T. C. B.
McLeish
,
Macromolecules
30
,
2159
(
1997
).
5.
L. J.
Fetters
,
A. D.
Kiss
,
D. S.
Pearson
,
G. F.
Quack
, and
F. J.
Vitus
,
Macromolecules
26
,
647
(
1993
).
6.
D. S.
Pearson
and
E.
Helfand
,
Macromolecules
17
,
888
(
1984
).
7.
R. C.
Ball
and
T. C. B.
McLeish
,
Macromolecules
22
,
1911
(
1989
).
8.
R.
Pasquino
,
T. C.
Vasilakopoulos
,
Y. C.
Jeong
,
H.
Lee
,
S.
Rogers
,
G.
Sakellariou
,
J.
Allgaier
,
A.
Takano
,
A. R.
Brás
,
T.
Chang
,
S.
Gooßen
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
,
N.
Hadjichristidis
,
D.
Richter
,
M.
Rubinstein
, and
D.
Vlassopoulos
,
ACS Macro Lett.
2
,
874
(
2013
).
9.
J. D.
Halverson
,
W. B.
Lee
,
G. S.
Grest
,
A. Y.
Grosberg
, and
K.
Kremer
,
J. Chem. Phys.
134
,
204905
(
2011
).
10.
J.
Roovers
,
Macromolecules
17
,
1196
(
1984
).
11.
Y. Y.
Chien
and
W. T.
Winter
,
Macromolecules
18
,
1361
(
1985
).
12.
P.
Wood-Adams
,
J. Rheol.
45
,
203
(
2001
).
13.
T. C. B.
Mcleish
,
Macromolecules
21
,
1062
(
1988
).
14.
T. C. B.
Mcleish
and
K. P.
O’Connor
,
Polymer
34
,
2998
(
1993
).
15.
A.
Jabbarzadeh
,
J. D.
Atkinson
, and
R. I.
Tanner
,
Macromolecules
36
,
5020
(
2003
).
16.
A.
Nikoubashman
and
C. N.
Likos
,
Macromolecules
43
,
1610
(
2010
).
17.
M.
Ripoll
,
R. G.
Winkler
, and
G.
Gompper
,
Phys. Rev. Lett.
96
,
188302
(
2006
).
18.
R.
Kharea
and
J.
de Pablo
,
J. Chem. Phys.
107
,
6956
(
1997
).
19.
X.
Xu
,
J.
Chen
, and
L.
An
,
J. Chem. Phys.
140
,
174902
(
2014
).
20.
W.
Chen
,
J.
Chen
, and
L.
An
,
Soft Matter
9
,
4312
(
2013
).
21.
W.
Chen
,
J.
Chen
,
L.
Liu
,
X.
Xu
, and
L.
An
,
Macromolecules
46
,
7542
(
2013
).
22.
C.
Baig
,
V. G.
Mavrantzas
, and
M.
Kröger
,
Macromolecules
43
,
6886
(
2010
).
23.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
24.
M.
Kröger
,
W.
Loose
, and
S.
Hess
,
J. Rheol.
37
,
1057
(
1993
).
25.
A. W.
Lees
and
S. F.
Edwards
,
J. Phys. C: Solid State Phys.
5
,
1921
(
1972
).
26.
T.
Soddemann
,
B.
Dunweg
, and
K.
Kremer
,
Phys. Rev. E
68
,
046702
(
2003
).
27.
The Art of Molecular Dynamics Simulation
, 2nd ed., edited by
D. C.
Rapaport
(
Cambridge University Press
,
New York
,
2004
).
28.
P. E.
Rouse
,
J. Chem. Phys.
21
,
1273
(
1953
).
29.
F.
Bueche
,
J. Chem. Phys.
40
,
484
(
1964
).
30.
W. W.
Graessley
and
J.
Roovers
,
Macromolecules
12
,
959
(
1979
).
31.
J. D.
Halverson
,
W. B.
Lee
,
G. S.
Grest
,
A. Y.
Grosberg
, and
K.
Kremer
,
J. Chem. Phys.
134
,
204904
(
2011
).
32.
S. P.
Singh
,
A.
Chatterji
,
G.
Gompper
, and
R. G.
Winkler
,
Macromolecules
46
,
8026
(
2013
).
33.
C. N.
Likos
,
H.
Löwen
,
M.
Watzlawek
,
B.
Abbas
,
O.
Jucknischke
,
J.
Allgaier
, and
D.
Richter
,
Phys. Rev. Lett.
80
,
4450
(
1998
).
34.
D. A.
Vega
,
J. M.
Sebastian
,
W. B.
Russel
, and
R. A.
Register
,
Macromolecules
35
,
169
(
2002
).
35.
Polymer Physics
, edited by
M.
Rubinstein
and
R. H.
Colby
(
Oxford University Press
,
New York
,
1998
).
36.
G. S.
Grest
,
K.
Kremer
,
S. T.
Milner
, and
T. A.
Witten
,
Macromolecules
22
,
1904
(
1989
).
37.
C.
Das
,
D. J.
Read
,
D.
Auhl
,
M.
Kapnistos
,
J.
den Doelder
,
I.
Vittorias
, and
T. C. B.
McLeish
,
J. Rheol.
58
,
737
(
2014
).
You do not currently have access to this content.