The understanding and eventual control of guest molecule transport in gas hydrates is of central importance for the efficient synthesis and processing of these materials for applications in the storage, separation, and sequestration of gases and natural gas production. Previously, some links have been established between dynamics of the host water molecules and guest-host hydrogen bonding interactions, but direct observation of transport in the form of cage-to-cage guest diffusion is still lacking. Recent calculations have suggested that pairs of different guest molecules in neighboring cages can affect guest-host hydrogen bonding and, therefore, defect injection and water lattice motions. We have chosen two sets of hydrate guest pairs, tetrahydrofuran (THF)-CO2 and isobutane-CO2, that are predicted to enhance or to diminish guest–host hydrogen bonding interactions as compared to those in pure CO2 hydrate and we have studied guest dynamics in each using 13C nuclear magnetic resonance (NMR) methods. In addition, we have obtained the crystal structure of the THF-CO2 sII hydrate using the combined single crystal X-ray diffraction and 13C NMR powder pattern data and have performed molecular dynamics-simulation of the CO2 dynamics. The NMR powder line shape studies confirm the enhanced and delayed dynamics for the THF and isobutane containing hydrates, respectively, as compared to those in the CO2 hydrate. In addition, from line shape studies and 2D exchange spectroscopy NMR, we observe cage-to-cage exchange of CO2 molecules in the THF-CO2 hydrate, but not in the other hydrates studied. We conclude that the relatively rapid intercage guest dynamics are the result of synergistic guest A–host water–guest B interactions, thus allowing tuning of the guest transport properties in the hydrates by choice of the appropriate guest molecules. Our experimental value for inter-cage hopping is slower by a factor of 106 than a published calculated value.

1.
(a)
D. W.
Davidson
, “
Clathrate hydrates
,” in
Water: A Comprehensive Treatise
, edited by
F.
Franks
(
Plenum Press
,
New York
,
1973
), Vol.
2
, p.
115
;
(b)
G. A.
Jeffrey
, “
Hydrate inclusion compounds
,” in
Inclusion Compounds
, edited by
J. L.
Atwood
,
J. E. D.
Davies
, and
D. D.
MacNicol
(
Academic Press
,
London
,
1984
), Vol.
1
, pp. 135-85;
(c)
G. A.
Jeffrey
, “
Hydrate inclusion compounds
,” in
Comprehensive Supramolecular Chemistry
, edited by
D. D.
MacNicol
,
F.
Toda
, and
R.
Bishop
(
Pergamon
,
London
,
1996
), Vol.
6
, pp. 757-788;
(d)
Y. A.
Dyadin
and
V. R.
Belosludov
, “
Stoichiometry and thermodynamics of clathrate hydrates
,” in
Comprehensive Supramolecular Chemistry
, edited by
D. D.
MacNicol
,
F.
Toda
, and
R.
Bishop
(
Pergamon
,
London
,
1996
), Vol.
6
, pp. 789-824;
(e)
S.
alavi
,
K. A.
Udachin
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
, “
Clathrate hydrates
,” in
Supramolecular Chemistry: From Molecules to Nanomaterials
, edited by
J. W.
Steed
and
P. A.
Gale
(
Wiley
,
Chichester UK
,
2012
), pp. 3017-3032.
2.
(a)
Y. F.
Makogon
,
F. A.
Trebin
,
A. A.
Trofimuk
,
V. P.
Tsarev
, and
N. V.
Cherskiy
,
Dokl. Acad. Sci. USSR Earth Sci. Sect.
196
, 197-200 (
1972
);
(b)
A. V.
Milkov
,
Earth-Sci. Rev
66
, 183-197 (
2004
).
3.
M.
Maslin
,
M.
Owen
,
R.
Betts
,
S.
Day
,
T. D.
Jones
, and
A.
Ridgwell
,
Philos. Trans. R. Soc., A.
368
,
2369
(
2010
).
4.
F. M.
O’Connor
,
O.
Boucher
,
N.
Gedney
,
C. D.
Jones
,
G. A.
Folberth
,
R.
Coppell
,
P.
Friedlingstein
,
W. J.
Colling
,
J.
Chappellaz
,
J.
Ridley
, and
C. E.
Johnson
,
Rev. Geophys.
48
,
RG4005
, doi:10.1029/2010RG000326 (
2010
).
5.
E. G.
Hammerschmidt
,
Ind. Eng. Chem.
26
,
851
(
1934
).
6.
E. D.
Sloan
, Jr.
and
C. A.
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
CRC Press
,
Boca Raton, FL
,
2008
).
7.
P.
Linga
,
A.
Adeyemo
, and
P.
Englezos
,
Environ. Sci. Technol.
42
, 315-320 (
2008
).
8.
(a)
J.-S.
Gudmundsson
,
M.
Parlaktuna
, and
A. A.
Khokhar
,
SPE Prod. Facil.
9
, 69-73 (
1994
);
(b)
Y.
Seo
,
J.-W.
Lee
,
R.
Kumar
,
I. L.
Moudrakovski
,
H.
Lee
, and
J. A.
Ripmeester
,
Chem. - Asian J.
8
, 1266-1274 (
2009
).
9.
(a)
W. L.
Mao
,
H.
Mao
,
A. F.
Goncharov
,
V. V.
Struzhkin
,
Q.
Guo
,
J.
Hu
,
J.
Shu
,
R. J.
Hemley
,
M.
Somayazulu
, and
Y.
Zhao
,
Science
297
,
2247
(
2002
);
[PubMed]
(b)
L. J.
Florusse
,
C. J.
Peters
,
J.
Schoonman
,
K. C.
Hester
,
C. A.
Koh
,
S. F.
Dec
,
K. N.
Marsh
, and
E. D.
Sloan
,
Science
306
, 469-471 (
2004
);
(c)
H.
Lee
,
J.
Lee
,
Y. D.
Kim
,
J.
Park
,
Y. T.
Seo
,
H.
Zeng
,
I. L.
Moudrakovski
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
,
Nature
434
,
743
(
2005
);
[PubMed]
(d)
T.
Sugahara
,
J. C.
Haag
,
P. S. R.
Prasad
,
A. A.
Warntjes
,
E. D.
Sloan
,
A. K.
Sum
, and
C. A.
Koh
,
J. Am. Chem. Soc.
131
, 14616-14617 (
2009
).
10.
(a)
H.
Lee
,
Y.
Seo
,
Y.-T.
Seo
,
I. L.
Moudrakovski
, and
J. A.
Ripmeester
,
Angew. Chem., Int. Ed.
42
, 5048-5051 (
2003
);
(b)
A.
Falenty
,
A. N.
Salamatin
, and
W. F.
Kuhs
,
J. Phys. Chem. C
117
, 8443-8457 (
2013
);
(c)
K.
Ohgaki
,
K.
Takano
,
H.
Sangawa
,
T.
Matsubara
, and
S.
Nakano
,
J. Chem. Eng. Jpn.
29
, 478-483 (
1996
);
(d)
O.
Ors
and
C.
Sinayuc
,
J. Pet. Sci. Eng.
119
,
156
(
2014
).
11.
(a)
S.
Takeya
,
T.
Hondoh
, and
T.
Uchida
,
Ann. N. Y. Acad. Sci.
912
,
973
(
2000
);
(b)
D. K.
Staykova
,
W. F.
Kuhs
,
A. N.
Salamatin
, and
T.
Hansen
,
J. Phys. Chem. B
107
, 10299-10311 (
2003
).
12.
B.
Peters
,
N. E. R.
Zimmermann
,
G. T.
Beckham
,
J. W.
Tester
, and
B. L.
Trout
,
J. Am. Chem. Soc.
130
, 17342-17350 (
2008
).
13.
A.
Demurov
,
R.
Radhakrishnan
, and
B. L.
Trout
,
J. Chem. Phys.
116
, 702-709 (
2002
).
14.
(a)
D. W.
Davidson
and
J. A.
Ripmeester
, “
NMR, NQR, and dielectric properties of clathrates
,” in
Inclusion Compounds
, edited by
J. L.
Atwood
,
J. E. D.
Davies
, and
D. D.
MacNicol
(
Academic Press
,
London
,
1984
), Vol.
3
, pp.
69
123
;
(b)
J. A.
Ripmeester
and
C. I.
Ratcliffe
, “
Solid state NMR studies of inclusion compounds
,” in
Inclusion Compounds
, edited by
J. L.
Atwood
,
J. E.
Davies
, and
D. D.
MacNicol
(
Oxford University Press
,
Oxford
,
1991
), Vol.
5
, pp. 37-85.
15.
L.
Onsager
and
L. K.
Runnels
,
J. Chem. Phys.
50
,
1089
(
1969
).
16.
(a)
S.
Alavi
,
R.
Susilo
, and
J. A.
Ripmeester
,
J. Chem. Phys.
130
,
174501
(
2009
);
[PubMed]
(b)
S.
Alavi
,
K. A.
Udachin
, and
J. A.
Ripmeester
,
Chem. - Eur. J.
16
, 1017-1025 (
2010
);
(c)
K.
Udachin
,
S.
Alavi
, and
J. A.
Ripmeester
,
J. Chem. Phys.
134
,
121104
(
2011
);
[PubMed]
(d)
S.
Alavi
,
S.
Takeya
,
R.
Ohmura
,
T. K.
Woo
, and
J. A.
Ripmeester
,
J. Chem. Phys.
133
,
074505
(
2010
).
[PubMed]
17.
S.
Alavi
and
J. A.
Ripmeester
,
J. Chem. Phys.
137
,
054712
(
2012
).
18.
(a)
G. M.
Sheldrick
, SADABS version 2.03, University of Gottingen, Germany, 2002;
(b) Bruker, SABABS, Bruker AXS Inc., Madison, WI, 2001.
19.
(a)
G. M.
Sheldrick
,
Acta Crystallogr.
A46
,
467
(
1990
);
(b)
G. M.
Sheldrick
,
Acta Crystallogr.
A64
, 112-122 (
2008
).
20.
E. L.
Hahn
,
Phys. Rev.
80
, 580-594 (
1950
).
21.
E. O.
Stejskal
and
J. D.
Memory
,
High Resolution NMR in the Solid State
(
Oxford University Press
,
Oxford
,
1994
).
22.
S. R.
Hartmann
and
E. L.
Hahn
,
Phys. Rev.
128
, 2042-2053 (
1962
).
23.
J.
Jeener
,
B. H.
Meier
,
P.
Bachmann
, and
R. R.
Ernst
,
J. Chem. Phys.
71
, 4546-4553 (
1979
).
24.
G.
Drobny
,
A.
Pines
,
S.
Sinton
,
D.
Weitekamp
, and
D.
Wemmer
,
Faraday Symp. Chem. Soc.
13
,
49
(
1979
).
25.
T. C.
Mak
and
R. K.
McMullan
,
J. Chem. Phys.
42
,
2732
(
1964
).
26.
J. L. F.
Abascal
,
E.
Sanz
,
R.
Garcia Fernandez
, and
C.
Vega
,
J. Chem. Phys.
122
,
234511
(
2005
).
27.
W. D.
Cornell
,
P.
Cieplak
,
C. L.
Bayly
,
I. R.
Gould
,
K. M.
Merz
, Jr.
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
28.
J. G.
Harris
and
K. H.
Yung
,
J. Phys. Chem.
99
,
12021
(
1995
).
29.
W.
Smith
,
T. R.
Forester
, and
I.
Todorov
,
The DL_Poly_2 User Manual, version 2.20
{ }(
STFC Daresbury Laboratory
,
Daresbury, UK
,
2010
).
30.
(a)
J. A.
Ripmeester
and
C. I.
Ratcliffe
,
J. Phys. Chem.
90
, 1259-1263 (
1986
);
(b)
J. A.
Ripmeester
and
C. I.
Ratcliffe
,
Energy Fuels
12
, 197-200 (
1998
);
(c)
K. A.
Udachin
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
,
J. Phys. Chem. B
105
, 4200-4204 (
2001
).
31.
(a)
C. I.
Ratcliffe
and
J. A.
Ripmeester
,
J. Struct. Chem.
40
, 654-662 (
1999
);
(b)
S.
Alavi
,
P.
Dornan
, and
T. K.
Woo
,
ChemPhysChem
9
, 911-919 (
2008
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.4907720 for figure of the THF + CO2X-ray cage structure; temperature dependence of the powder NMR spectra; details of the refinement of the fit of X-ray diffraction data for the sII THF + CO2clathrate hydrate to a structure consistent with NMR results; computed lattice constants for the sII THF + CO2hydrates with different CO2small cage occupancies; figure of the computed hydrogen bonding of THF with large cage water molecule; trajectory data to view an animation for THF hydrogen bonding with water in the large sII cages and CO2motion in sI small cages. CCDC 963037 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
33.
S.
Alavi
and
J. A.
Ripmeester
,
Angew. Chem. Int. Ed.
46
,
6102
(
2007
).
34.
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Multidimensional Solid-State NMR and Polymers
(
Academic Press
,
London
,
1994
), Chap. 7, p. 240.
35.
A.
Abragam
,
Principles of Nuclear Magnetism
(
Oxford University Press
,
London
,
1961
).
36.
(a)
P. G.
Brewer
,
G.
Friederich
,
E. T.
Peltzer
, and
F. M.
Orr
,Jr.
,
Science
284
,
943
945
(
1999
);
[PubMed]
(b)
Y.
Park
,
D.-Y.
Kim
,
J.-W.
Lee
,
D.-G.
Huh
,
K.-P.
Park
,
J.
Lee
, and
H.
Lee
,
Proc. Natl. Acad. Sci. U. S. A.
103
, 12690-12694 (
2006
).
37.
S.
Liang
and
P. G.
Kusalik
,
J. Am. Chem. Soc.
133
, 1870-1876 (
2011
).
38.
T.
Ikeda-Fukazawa
,
K.
Kawamura
, and
T.
Hondoh
,
Mol. Simul.
30
, 973-979 (
2004
).

Supplementary Material

You do not currently have access to this content.