Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic approach under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering and predict the switching between one minimum and another under squeezing and charging.

1.
S.
Zhang
,
N.
Sun
,
X.
He
,
X.
Lu
, and
X.
Zhang
,
J. Phys. Chem. Ref. Data
35
,
1475
(
2006
).
2.
T. L.
Greaves
,
A.
Weerawardena
,
C.
Fong
,
I.
Krodkiewska
, and
C. J.
Drummond
,
J. Phys. Chem. B
110
,
22479
(
2006
).
3.
N. V.
Plechkova
and
K. R.
Seddon
,
Chem. Soc. Rev.
37
,
123
(
2008
).
4.
M.
Mezger
,
H.
Schröder
,
H.
Reichert
,
S.
Schramm
,
J. S.
Okasinski
,
S.
Schöder
,
V.
Honkimäki
,
M.
Deutsch
,
B. M.
Ocko
,
J.
Ralston
 et al,
Science
322
,
424
(
2008
).
5.
R.
Hayes
,
N.
Borisenko
,
M. K.
Tam
,
P. C.
Howlett
,
F.
Endres
, and
R.
Atkin
,
J. Phys. Chem. C
115
,
6855
(
2011
).
6.
M.
Bazant
,
B.
Storey
, and
A.
Kornyshev
,
Phys. Rev. Lett.
106
,
046102
(
2011
).
7.
A. A.
Kornyshev
,
J. Phys. Chem. B
111
,
5545
(
2007
).
8.
R.
Atkin
and
G. G.
Warr
,
J. Phys. Chem. C
111
,
5162
(
2007
).
9.
J.
Sweeney
,
F.
Hausen
,
R.
Hayes
,
G. B.
Webber
,
F.
Endres
,
M. W.
Rutland
,
R.
Bennewitz
, and
R.
Atkin
,
Phys. Rev. Lett.
109
,
155502
(
2012
).
10.
A.
Smith
,
K.
Lovelock
,
N.
Gosvami
,
T.
Welton
, and
S.
Perkin
,
Phys. Chem. Chem. Phys.
15
,
15317
(
2013
).
11.
H.
Li
,
R. J.
Wood
,
M. W.
Rutland
, and
R.
Atkin
,
Chem. Commun.
50
,
4368
(
2014
).
12.
J.
Black
,
D.
Walters
,
A.
Labuda
,
G.
Feng
,
P.
Hillesheim
,
S.
Dai
,
P.
Cummings
,
S.
Kalinin
,
R.
Proksch
, and
N.
Balke
,
Nano Lett.
13
,
5954
(
2013
).
13.
A.
Mendonca̧
,
A.
Pàdua
, and
P.
Malfreyt
,
J. Chem. Theory Comput.
9
,
1600
(
2013
).
14.
F. F.
Canova
,
H.
Matsubara
,
M.
Mizukami
,
K.
Kurihara
, and
A. L.
Shluger
,
Phys. Chem. Chem. Phys.
16
,
8247
(
2014
).
15.
M.
Fedorov
and
A.
Kornyshev
,
J. Phys. Chem. B
112
,
11868
(
2008
).
16.
N.
Georgi
,
A.
Kornyshev
, and
M.
Fedorov
,
J. Electroanal. Chem.
649
(
1–2
),
261
(
2010
).
17.
M.
Fedorov
,
N.
Georgi
, and
A.
Kornyshev
,
Electrochem. Commun.
12
(
2
),
296
(
2010
).
18.
Z.
Wang
and
C.
Priest
,
Langmuir
29
,
11344
(
2013
).
19.
F. G.
Fumi
and
M. P.
Tosi
,
J. Phys. Chem. Solids
25
,
31
(
1964
).
20.
M.
González-Melchor
,
F.
Bresme
, and
J.
Alejandre
,
J. Chem. Phys.
122
,
104710
(
2005
).
21.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
22.
A.
Vanossi
,
A.
Benassi
,
N.
Varini
, and
E.
Tosatti
,
Phys. Rev. B
87
,
045412
(
2013
).
23.
D. A.
Beattie
,
R. M.
Espinosa-Marzal
,
M. N. P.
Tracey
,
T. M.
Ho
,
J.
Ralston
,
C. J. E.
Richard
,
P. M. F.
Sellapperumage
, and
M.
Krasowska
,
J. Phys. Chem. C
117
,
23676
(
2013
).
24.
W. J. J.
Welters
and
L. G. J.
Fokkink
,
Langmuir
14
,
1535
(
1998
).
25.
M.
Paneru
,
C.
Priest
,
R.
Sedev
, and
J.
Ralston
,
J. Am. Chem. Soc.
132
,
8301
(
2010
).
26.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Academic Press
,
San Diego, CA
,
2011
).
27.
B. N. J.
Persson
and
E.
Tosatti
,
Phys. Rev. B
50
,
5590
(
1994
).
28.
J. P.
Gao
,
W. D.
Luedtke
, and
U.
Landman
,
J. Chem. Phys.
106
,
4309
(
1997
).
29.
U.
Tartaglino
,
B. N. J.
Persson
,
A. I.
Volokitin
, and
E.
Tosatti
,
Phys. Rev. B
66
,
214207
(
2002
).
30.
U.
Tartaglino
,
I. M.
Sivebaek
,
B. N. J.
Persson
, and
E.
Tosatti
,
J. Chem. Phys.
125
,
014704
(
2006
).
31.
F.
Mugele
and
M.
Salmeron
,
Phys. Rev. Lett.
84
,
5796
(
2000
).
32.
S.
Zilberman
,
B. N. J.
Persson
,
A.
Nitzan
,
F.
Mugele
, and
M.
Salmeron
,
Phys. Rev. E
63
,
055103(R)
(
2001
).
33.
K.
Ueno
,
M.
Kasuya
,
M.
Watanabe
,
M.
Mizukami
, and
K.
Kurihara
,
Phys. Chem. Chem. Phys.
12
,
4066
(
2010
).
34.
A. M.
Smith
,
K. R. J.
Lovelock
,
N. N.
Gosvami
,
P.
Licence
,
A.
Dolan
,
T.
Welton
, and
S.
Perkin
,
J. Phys. Chem. Lett.
4
,
378
(
2013
).
35.
R.
Atkin
,
S. Z. E.
Abedin
,
R.
Hayes
,
L. H. S.
Gasparotto
,
N.
Borisenko
, and
F.
Endres
,
J. Phys. Chem. C
113
,
13266
(
2009
).
36.
J.
Hoth
,
F.
Hausen
,
M. H.
Müser
, and
R.
Bennewitz
,
J. Phys.: Condens. Matter
26
,
284110
(
2014
).
37.
O.
Fajardo
,
F.
Bresme
,
A.
Kornyshev
, and
M.
Urbakh
,
Sci. Rep.
5
,
7698
(
2015
).
38.
Y. L. Y.
Leng
,
Y.
Xiang
, and
Q.
Rao
,
J. Chem. Phys.
139
,
074704
(
2013
).
39.
N.
Borisenko
,
S. Z. E.
Abedin
, and
F.
Endres
,
J. Phys. Chem. B
110
,
6250
(
2006
).
40.
L.
Lin
,
J. Y. Y.
Wang
,
Y.
Yuan
,
J.
Xiang
, and
B.
Mao
,
Electrochem. Commun.
5
,
995
(
2003
).
41.
J. J.
Segura
,
A.
Elbourne
,
E. J.
Wanless
,
G. G.
Warr
,
K.
Voïchovsky
, and
R.
Atkin
,
Phys. Chem. Chem. Phys.
15
,
3320
(
2013
).
42.
I.
Bou-Malham
and
L.
Bureau
,
Soft Matter
6
,
4062
(
2010
).
43.
A. A.
Kornyshev
and
R.
Qiao
,
J. Phys. Chem. C
118
,
18285
(
2014
).
44.
V.
Ivaništšev
and
M. V.
Fedorov
,
Interface
23
,
65
(
2014
), PDF available online at www.electrochem.org/dl/interface/spr/spr14/spr14_p65_69.pdf.
45.
V.
Ivaništšev
,
S.
O’Connor
, and
M. V.
Fedorov
,
Electrochem. Commun.
48
,
61
(
2014
).
46.
K.
Kirchner
,
T.
Kirchner
,
V.
Ivaništšev
, and
M.
Fedorov
,
Electrochim. Acta
110
,
762
(
2013
).
You do not currently have access to this content.