It is well-known that the surface tension of small droplets and bubbles deviates significantly from that at the planar interface. In this work, we analyze the leading corrections in the curvature expansion of the surface tension, i.e., the Tolman length and the rigidity constants, using a “hybrid” square gradient theory, where the local Helmholtz energy density is described by an accurate equation of state. We particularize this analysis for the case of the truncated and shifted Lennard-Jones fluid, and are then able to reproduce the surface tensions and Tolman length from recent molecular dynamics simulations within their accuracy. The obtained constants in the curvature expansion depend little on temperature, except in the vicinity of the critical point. When the bubble/droplet radius becomes comparable to the interfacial width at coexistence, the critical bubble/droplet prefers to change its density, rather than to decrease its size, and the curvature expansion is no longer sufficient to describe the change in surface tension. We find that the radius of the bubble/droplet in this region is proportional to the correlation length between fluctuations in the liquid-phase.

1.
D.
Kashchiev
,
Nucleation: Basic Theory with Applications
(
Butterworth-Heinemann
,
Oxford
,
2000
).
2.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
(
Princeton University Press
,
Princeton
,
1996
).
3.
H.
Vehkamäki
,
Classical Nucleation Theory in Multicomponent Systems
(
Springer Verlag
,
Berlin
,
2006
).
4.
V.
Kalikmanov
,
Nucleation Theory
(
Springer Verlag
,
Berlin
,
2013
).
5.
A.
Fladerer
and
R.
Strey
,
J. Chem. Phys.
124
,
164710
(
2006
).
6.
K.
Iland
,
J.
Wölk
,
R.
Strey
, and
D.
Kashchiev
,
J. Chem. Phys.
127
,
154506
(
2007
).
7.
R.
McGraw
and
A.
Laaksonen
,
J. Chem. Phys.
106
,
5284
(
1997
).
8.
P. R.
ten Wolde
and
D.
Frenkel
,
J. Chem. Phys.
109
,
9901
(
1998
).
9.
A. E.
van Giessen
and
E. M.
Blokhuis
,
J. Chem. Phys.
131
,
164705
(
2009
).
10.
E. M.
Blokhuis
and
A. E.
van Giessen
,
J. Phys.: Condens. Matter
25
,
225003
(
2013
).
11.
M. N.
Joswiak
,
N.
Duff
,
M. F.
Doherty
, and
B.
Peters
,
J. Phys. Chem. Lett.
4
,
4267
(
2013
).
12.
R. C.
Tolman
,
J. Chem. Phys.
17
,
333
(
1949
).
13.
A. M.
Albano
,
D.
Bedeaux
, and
J.
Vlieger
,
Physica A
99
,
293
(
1979
).
14.
E. M.
Blokhuis
and
J.
Kuipers
,
J. Chem. Phys.
124
,
074701
(
2006
).
15.
Z.
Li
and
J.
Wu
,
Ind. Eng. Chem. Res.
47
,
4988
(
2008
).
16.
B. J.
Block
,
S. K.
Das
,
M.
Oettel
,
P.
Virnau
, and
K.
Binder
,
J. Chem. Phys.
133
,
154702
(
2010
).
17.
A.
Tröster
,
M.
Oettel
,
B.
Block
,
P.
Virnau
, and
K.
Binder
,
J. Chem. Phys.
136
,
064709
(
2012
).
18.
A. E.
van Giessen
and
E. M.
Blokhuis
,
J. Chem. Phys.
116
,
302
(
2002
).
19.
Y. A.
Lei
,
T.
Bykov
,
S.
Yoo
, and
X. C.
Zeng
,
J. Am. Chem. Soc.
127
,
15346
(
2005
).
20.
M.
Horsch
,
H.
Hasse
,
A. K.
Shchekin
,
A.
Agarwal
,
S.
Eckelsbach
,
J.
Vrabec
,
E. A.
Müller
, and
G.
Jackson
,
Phys. Rev. E
85
,
031605
(
2012
).
21.
J. G.
Sampayo
,
A.
Malijevský
,
E. A.
Müller
,
E.
de Miguel
, and
G.
Jackson
,
J. Chem. Phys.
132
,
141101
(
2010
).
22.
K.
Koga
,
X. C.
Zeng
, and
A. K.
Shchekin
,
J. Chem. Phys.
109
,
4063
(
1998
).
23.
W.
Helfrich
,
Z. Naturforsch. C
28
,
693
(
1973
).
24.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
25.
R.
Evans
,
Fundamentals of Inhomogeneous Fluids
(
Marcel Dekker
,
New York
,
1992
), Chap. 3.
26.
D.
Oxtoby
and
R.
Evans
,
J. Chem. Phys.
89
,
7521
(
1988
).
27.
X. C.
Zeng
and
D. W.
Oxtoby
,
J. Chem. Phys.
94
,
4472
(
1991
).
28.
J. C.
Barret
,
J. Chem. Phys.
124
,
144705
(
2006
).
29.
J.
Gross
,
J. Chem. Phys.
131
,
204705
(
2009
).
30.
R. M.
Nyquist
,
V.
Talanquer
, and
D. W.
Oxtoby
,
J. Chem. Phys.
103
,
1175
(
1995
).
31.
J. C.
Barret
,
J. Phys.: Condens. Matter
9
,
L19
(
1997
).
32.
B.
Smit
,
J. Chem. Phys.
96
,
8639
(
1992
).
33.
P.
Cornelisse
, “
The gradient theory applied—Simultaneous modelling of interfacial tension and phase behaviour
,” Ph.D. thesis (
Delft University of Technology
,
1997
).
34.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Clarendon Press
,
Oxford
,
1984
).
35.
J. F.
Lutsko
,
J. Chem. Phys.
134
,
164501
(
2011
).
36.
E. M.
Blokhuis
and
D.
Bedeaux
,
Mol. Phys.
80
,
705
(
1993
).
37.
D.
Bedeaux
,
E.
Johannessen
, and
A.
Røsjorde
,
Physica A
330
,
329
(
2003
).
38.
Ø.
Wilhelmsen
,
D.
Bedeaux
, and
S.
Kjelstrup
,
Phys. Chem. Chem. Phys.
16
,
10573
(
2014
).
39.
L. F.
Shampine
,
Appl. Math. Comput.
138
,
99
(
2003
).
40.
C. L.
Weakliem
and
H.
Reiss
,
J. Chem. Phys.
99
,
5374
(
1993
).
41.
D.
Reguera
,
R. K.
Bowles
,
Y.
Djikaev
, and
H.
Reiss
,
J. Chem. Phys.
118
,
340
(
2003
).
42.
Ø.
Wilhelmsen
,
D.
Bedeaux
,
S.
Kjelstrup
, and
D.
Reguera
,
J. Chem. Phys.
140
,
024704
(
2014
).
43.
P.
Grosfils
and
J. F.
Lutsko
,
J. Chem. Phys.
130
,
054703
(
2009
).
44.
S.
Plimpton
,
P.
Crozier
, and
A.
Thompson
(
Sandia National Laboratories
, LAMMPS-large-scale atomic/molecular massively parallel simulator (
2007
).
45.
E. M.
Blokhuis
and
D.
Bedeaux
,
Physica A
184
,
42
(
1992
).
46.
E.
van der Linden
,
S.
Geiger
, and
D.
Bedeaux
,
Physica A
156
,
130
(
1989
).
47.
A.
Malijevský
and
G.
Jackson
,
J. Phys.: Condens. Matter
24
,
464121
(
2012
).
48.
S.
Werth
,
S. V.
Lishchuk
,
M.
Horsch
, and
H.
Hasse
,
Physica A
392
,
2359
(
2013
).
49.
M.
Horsch
and
H.
Hasse
,
Chem. Eng. Sci.
107
,
235
(
2014
).
50.
G.
Wilemski
and
J. S.
Li
,
J. Chem. Phys.
121
,
7821
(
2004
).
You do not currently have access to this content.