Nucleation of bubbles and droplets is of fundamental interest in science and technology and has been widely investigated through experiments, theory, and simulations. Giving the rare event nature of these phenomena, nucleation simulations are computationally costly and require the use of a limited number of particles. Moreover, they are often performed in the canonical ensemble, i.e., by fixing the total volume and number of particles, to avoid the additional complexities of implementing a barostat. However, cavitation and droplet formation take place differently depending on the ensemble. Here, we analyze the importance of finite-size effects in cavitation and droplet formation. We present simple formulas which predict the finite-size corrections to the critical size, the nucleation barrier, and the nucleation rates in the canonical ensemble very accurately. These results can be used to select an appropriate system-size for simulations and to get a more precise evaluation of nucleation in complex substances, by using a small number of molecules and correcting for finite-size effects.

You do not currently have access to this content.