Nucleation of bubbles and droplets is of fundamental interest in science and technology and has been widely investigated through experiments, theory, and simulations. Giving the rare event nature of these phenomena, nucleation simulations are computationally costly and require the use of a limited number of particles. Moreover, they are often performed in the canonical ensemble, i.e., by fixing the total volume and number of particles, to avoid the additional complexities of implementing a barostat. However, cavitation and droplet formation take place differently depending on the ensemble. Here, we analyze the importance of finite-size effects in cavitation and droplet formation. We present simple formulas which predict the finite-size corrections to the critical size, the nucleation barrier, and the nucleation rates in the canonical ensemble very accurately. These results can be used to select an appropriate system-size for simulations and to get a more precise evaluation of nucleation in complex substances, by using a small number of molecules and correcting for finite-size effects.

1.
F.
Caupin
and
E.
Herbert
,
C. R. Phys.
7
,
1000
(
2006
).
2.
K.
Davitt
,
A.
Arvengas
, and
F.
Caupin
,
EPL
90
,
16002
(
2010
).
3.
F.
Caupin
,
A.
Arvengas
,
K.
Davitt
,
M.
El Mekki Azouzi
,
K.
Shmulovich
,
C.
Ramboz
,
D. A.
Sessoms
, and
A. D.
Stroock
,
J. Phys.: Condens. Matter
24
,
284110
(
2012
).
4.
Q.
Zheng
,
D. J.
Durben
,
G. H.
Wolf
, and
C. A.
Angell
,
Science
254
,
829
(
1991
).
5.
M.
El Mekki Azouzi
,
C.
Ramboz
,
J.
Lenain
, and
F.
Caupin
,
Nat. Phys.
9
,
38
(
2013
).
6.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
(
Princeton University Press
,
Princeton
,
1996
).
7.
D.
Kashchiev
,
Nucleation: Basic Theory with Applications
(
Butterworth-Heinemann
,
Oxford
,
2000
).
8.
V.
Kalikmanov
,
Nucleation Theory
(
Springer Verlag
,
Berlin
,
2013
).
9.
H.
Vehkamäki
,
Classical Nucleation Theory in Multicomponent Systems
(
Springer Verlag
,
Berlin
,
2006
).
10.
F.
Abraham
,
Homogenous Nucleation Theory: The Pretransition Theory of Vapor Condensation
(
Academic Press
,
New York
,
1974
).
11.
T.
Kinjo
and
M.
Matsumoto
,
Fluid Phase Equilib.
144
,
343
(
1998
).
12.
T.
Kinjo
,
K.
Ohguchi
,
K.
Yasuoka
, and
M.
Matsumoto
,
Comput. Mater. Sci.
14
,
138
(
1999
).
13.
S. H.
Park
,
J. G.
Weng
, and
C. L.
Tien
,
Int. J. Heat Mass Transfer
44
,
1849
(
2001
).
14.
Y. W.
Wu
and
C.
Pan
,
Microscale Thermophys. Eng.
7
,
137
(
2003
).
15.
M.
Sekine
,
K.
Yasuoka
,
T.
Kinjo
, and
M.
Matsumoto
,
Fluid Dyn. Res.
40
,
597
(
2008
).
16.
Z.-J.
Wang
,
C.
Valeriani
, and
D.
Frenkel
,
J. Phys. Chem. B
113
,
3776
(
2009
).
17.
S. L.
Meadley
and
F. A.
Escobedo
,
J. Chem. Phys.
137
,
074109
(
2012
).
18.
M.
Zhang
,
Y. S.
Tu
, and
H. P.
Fang
,
Appl. Math. Mech.
34
,
1433
(
2013
).
19.
J. L. F.
Abascal
,
M. A.
Gonzalez
,
J. L.
Aragones
, and
C.
Valeriani
,
J. Chem. Phys.
138
,
084508
(
2013
).
20.
D. I.
Zhukhovitskii
,
J. Chem. Phys.
139
,
164513
(
2013
).
21.
K.
Torabi
and
D. S.
Corti
,
J. Phys. Chem. B
117
,
12479
(
2013
).
22.
V. G.
Baidakov
and
K. S.
Bobrov
,
J. Chem. Phys.
140
,
184506
(
2014
).
23.
V. K.
Shen
and
P. G.
Debenedetti
,
J. Chem. Phys.
111
,
3581
(
1999
).
24.
V. K.
Shen
and
J. R.
Errington
,
J. Phys. Chem. B
108
,
19595
(
2004
).
25.
A. V.
Neimark
and
A.
Vishnyakov
,
J. Chem. Phys.
122
,
054707
(
2005
).
26.
L. G.
MacDowell
,
V. K.
Shen
, and
J. R.
Errington
,
J. Chem. Phys.
125
,
34705
(
2006
).
27.
A. J. M.
Yang
,
J. Chem. Phys.
79
,
6289
(
1983
).
28.
A. J. M.
Yang
,
J. Chem. Phys.
82
,
2082
(
1985
).
29.
D.
Reguera
,
R. K.
Bowles
,
Y.
Djikaev
, and
H.
Reiss
,
J. Chem. Phys.
118
,
340
(
2003
).
30.
K. S.
Glavatskiy
,
D.
Reguera
, and
D.
Bedeaux
,
J. Chem. Phys.
138
,
204708
(
2013
).
31.
Ø.
Wilhelmsen
,
D.
Bedeaux
,
S.
Kjelstrup
, and
D.
Reguera
,
J. Chem. Phys.
140
,
024704
(
2014
).
32.
J.
Wedekind
,
D.
Reguera
, and
R.
Strey
,
J. Chem. Phys.
125
,
214505
(
2006
).
33.
C. L.
Weakliem
and
H.
Reiss
,
J. Chem. Phys.
99
,
5374
(
1993
).
34.
Ø.
Wilhelmsen
,
D.
Bedeaux
,
S.
Kjelstrup
, and
D.
Reguera
,
J. Chem. Phys.
141
,
071103
(
2014
).
35.
D.
Reguera
and
H.
Reiss
,
J. Chem. Phys.
119
,
1533
(
2003
).
36.
S.
Kjelstrup
and
D.
Bedeaux
,
Non-Equilibrium Thermodynamics of Heterogeneous Systems
(
World Scientific
,
Singapore
,
2008
).
37.
G.
Wilemski
,
J. Chem. Phys.
80
,
1370
(
1984
).
38.
J.
Wedekind
,
A. P.
Hyvärinen
,
D.
Brus
, and
D.
Reguera
,
Phys. Rev. Lett.
101
,
125703
(
2008
).
39.
D.
Marti
,
Y.
Krüger
,
D.
Fleitmann
,
M.
Frenz
, and
J.
Ric̆ka
,
Fluid Phase Equilib.
314
,
13
(
2012
).
40.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
41.
P.
Grosfils
and
J. F.
Lutsko
,
J. Chem. Phys.
130
,
054703
(
2009
).
42.
A. V.
Neimark
and
A.
Vishnyakov
,
Phys. Rev. E
62
,
4611
(
2000
).
43.
A.
Vishnyakov
and
A. V.
Neimark
,
J. Phys. Chem. B
105
,
7009
(
2001
).
44.
A. V.
Neimark
,
P. I.
Ravikovitch
, and
A.
Vishnyakov
,
Phys. Rev. E
65
,
031505
(
2002
).
45.
A. V.
Neimark
and
A.
Vishnyakov
,
J. Phys. Chem. B
109
,
5962
(
2005
).
46.
B.
Smit
,
J. Chem. Phys.
96
,
8639
(
1992
).
47.
K.
Yasuoka
and
M.
Matsumoto
,
J. Chem. Phys.
109
,
8451
(
1998
).
48.
C.
Vega
and
J. L. F.
Abascal
,
Phys. Chem. Chem. Phys.
13
,
19663
(
2011
).
49.
D. S.
Corti
,
Phys. Rev. E
64
,
016128
(
2001
).
You do not currently have access to this content.