The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) (1Δ←1Σ+) transition, with a new weak transition assigned to (1Σ1Σ+) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to 1Σ+ and 1Π transitions. Based on our recent measurements of differential cross sections for the optically allowed (1Σ+ and 1Π) transitions of COS by electron impact, the optical oscillator strength f0 value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km).

1.
R. J.
Charlson
,
S. E.
Schwartz
,
J. M.
Hales
,
R. D.
Cess
,
J. A.
Coakley
,
J. E.
Hansen
, and
D. J.
Hofmann
, “
Climate forcing by anthropogenic aerosols
,”
Science
225
,
423
430
(
1992
).
2.
P.
Limão-Vieira
,
S.
Eden
,
P. A.
Kendall
,
N. J.
Mason
, and
S. V.
Hoffmann
, “
High resolution VUV photo-absorption cross-section for dimethylsulphide, (CH3)2S
,”
Chem. Phys. Lett.
366
,
343
-
349
(
2002
).
3.
E. A.
Drage
,
P.
Cahillane
,
S. V.
Hoffmann
,
N. J.
Mason
, and
P.
Limão-Vieira
, “
High resolution VUV photoabsorption cross section of dimethyl sulphoxide (CH3)2SO
,”
Chem. Phys.
331
,
447
452
(
2007
).
4.
N. J.
Mason
,
A.
Dawes
,
R.
Mukerji
,
E. A.
Drage
,
E.
Vasekova
,
S. M.
Webb
, and
P.
Limão-Vieira
, “
Atmospheric chemistry with synchrotron radiation
,”
J. Phys. B: At., Mol. Opt. Phys.
38
,
S893
S911
(
2005
).
5.
E.
Kjellstrom
, “
A three-dimensional global model study of carbonyl sulfide in the troposphere and the lower stratosphere
,”
J. Atmos. Chem.
29
,
151
177
(
1998
) and references therein.
6.
T. S.
Bates
,
B. K.
Lamb
,
A.
Guenther
,
J.
Dignon
, and
R. E.
Stoiber
, “
Sulfur emissions to the atmosphere from natural sources
,”
J. Atmos. Chem.
14
,
315
337
(
1992
) and references therein.
7.
B. C.
Nguyen
,
N.
Mihalopoulos
,
J. P.
Putaud
, and
B.
Bonsang
, “
Carbonyl sulfide emissions from biomass burning in the tropics
,”
J. Atmos. Chem.
22
,
55
65
(
1995
) and references therein.
8.
M. E.
Palumbo
,
T. R.
Geballe
, and
A. G. G. M.
Tielens
, “
Solid carbonyl sulfide (OCS) in dense molecular clouds
,”
Astrophys. J.
479
,
839
844
(
1997
).
9.
E.
Lellouch
,
G.
Paubert
,
R.
Moreno
,
M.
Festou
,
B.
Bezard
,
D.
Bockelee-Morven
,
P.
Colom
,
J.
Crovisier
,
T.
Encrenaz
,
D
Gautier
 et al., “
Chemical and thermal responde of jupiter atmosphere following the impact of comet shoemaker-levy-9
,”
Nature
373
,
592
595
(
1995
).
10.
R.
Feng
,
G.
Cooper
, and
C. E.
Brion
, “
Quantitative studies of the photoabsorption of carbonyl sulphide in the valence-shell, S 2p, 2s and C1s inner-shell regions (4-360 eV) by dipole electron impact spectroscopies
,”
Chem. Phys.
252
,
359
378
(
2000
) and references therein.
11.
S. E.
Wheeler
,
A. C.
Simmonett
, and
H. F.
Schaefer
, “
Theoretical calculations on the renner-teller bending frequencies of the à 2Π state of OCS+
,”
J. Phys. Chem. A
111
,
4551
4555
(
2007
).
12.
J. A.
Schmidt
,
M. S.
Johnson
,
G. C.
McBane
, and
R.
Schinke
, “
The ultraviolet spectrum of OCS from first principles: Electronic transitions, vibrational structure and temperature dependence
,”
J. Chem. Phys.
137
,
054313
(
2012
).
13.
L.-S.
Wang
,
J. E.
Reutt
,
Y. T.
Lee
, and
D. A.
Shirley
, “
High resolution UV photoelectron spectroscopy of CO2+, COS+ and CS2+ using supersonic molecular beams
,”
J. Electron Spectrosc. Relat. Phenom.
47
,
167
186
(
1998
).
14.
C.
Cossart-Magos
,
M.
Jungen
,
R.
Xu
, and
F.
Launay
, “
High resolution absorption spectrum of jet-cooled OCS between 64000 and 91000 cm−1
,”
J. Chem. Phys.
119
,
3219
3233
(
2003
).
15.
H.
Murai
,
Y.
Ishijima
,
T.
Mitsumura
,
Y.
Sakamoto
,
H.
Kato
,
M.
Hoshino
,
F.
Blanco
,
G.
García
,
P.
Limão-Vieira
,
M. J.
Brunger
,
S. J.
Buckman
, and
H.
Tanaka
, “
A comprehensive and comparative study of elastic electron scattering from OCS and CS2 in the energy region from 1.2 to 200 eV
,”
J. Chem. Phys.
138
,
054302
(
2013
).
16.
W. M.
Flicker
,
O. A.
Mosher
, and
A.
Kuppermann
, “
Electron-impact excitation of low-lying electronic states in CS2, OCS, and SO
,”
J. Chem. Phys.
69
,
3910
(
1978
).
17.
B.
Leclerc
,
A.
Poulin
,
D.
Roy
,
M.-J.
Hubin-Franskin
, and
J.
Delwiche
, “
Study of OCS by electron energy loss spectroscopy
,”
J. Chem. Phys.
75
,
5329
5348
(
1981
).
18.
G.
Herzberg
,
Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of PolyatomicMolecules
(
Van Nostrand
,
Princeton
,
1966
).
19.
S.
Eden
,
P.
Limão-Vieira
,
S. V.
Hoffmann
, and
N. J.
Mason
, “
VUV photoabsorption in CF3 X (X = Cl, Br, I) fluoro-alkanes
,”
Chem. Phys.
323
,
313
333
(
2006
).
20.
H.
Tanaka
,
L.
Boesten
,
D.
Matsunaga
, and
T.
Kudo
, “
Differential elastic electron scattering cross sections for ethane in the energy range from 2 to 100 eV
,”
J. Phys. B: At., Mol. Opt. Phys.
21
,
1255
1263
(
1988
).
21.
H.
Tanaka
,
T.
Ishikawa
,
T.
Masai
,
T.
Sagara
,
L.
Boesten
,
M.
Takekawa
,
Y.
Itikawa
, and
M.
Kimura
, “
Elastic collisions of low-to intermediate-energy electrons from carbon dioxide: Experimental and theoretical differential cross sections
,”
Phys. Rev. A
57
,
1798
1808
(
1998
).
22.
H.
Kato
,
T.
Asahina
,
H.
Masui
,
M.
Hoshino
,
H.
Tanaka
,
H.
Cho
,
O.
Ingolfsson
,
F.
Blanco
,
G.
García
,
S. J.
Buckam
, and
M. J.
Brunger
, “
Substitution effects in elastic electron collisions with CH3X (X=F, Cl, Br, I) molecules
,”
J. Chem. Phys.
132
,
074309
(
2010
).
23.
L.
Boesten
and
H.
Tanaka
, “
Rational function fits to the nonresonant elastic differential cross sections (DCS) for e + He collisions, 0°–180°, 0.1 to 1000 eV
,”
At. Data Nucl. Data Tables
52
,
25
42
(
1992
).
24.
S. K.
Srivastava
,
A.
Chutjian
, and
S.
Trajmar
, “
Absolute elastic differential electron scattering cross sections in the intermediate energy region. I. H2
,”
J. Chem. Phys.
63
,
2659
2665
(
1975
).
25.
R. T.
Brinkmann
and
S.
Trajmar
, “
Effective path length corrections in beam-beam scattering experiments
,”
J. Phys. E: Sci. Instrum.
14
,
245
255
(
1981
).
26.
J. C.
Nickel
,
P. W.
Zetner
,
G.
Shen
, and
S.
Trajmar
, “
Principles and procedures for determining absolute differential electron-molecule (atom) scattering cross sections
,”
J. Phys. E: Sci. Instrum.
22
,
730
738
(
1989
).
27.
Y.-K.
Kim
, “
Scaled born cross sections for excitations of H2 by electron impact
,”
J. Chem. Phys.
126
,
064305
(
2007
).
28.
L.
Vriens
, “
Excitation of helium by electrons and protons
,”
Phys. Rev.
160
,
100
108
(
1967
).
29.
E. N.
Lassettre
,
A.
Skerbele
, and
M. A.
Dillon
, “
Generalized oscillator strength for 11S → 21P transition of helium. Theory of limiting oscillator strengths
,”
J. Chem. Phys.
50
,
1829
(
1969
).
30.
B. H.
Bransden
and
C. J.
Joachain
,
Physics of Atoms and Molecules
(
Longmans
,
London
,
1983
).
31.
Y.-K.
Kim
, “
Scaling of plane-wave born cross sections for electron-impact excitation of neutral atoms
,”
Phys. Rev. A
64
,
032713
(
2001
).
32.
K.
Anzai
,
H.
Kato
,
M.
Hoshino
,
H.
Tanaka
,
Y.
Itikawa
,
L.
Campbell
,
M. J.
Brunger
,
S. J.
Buckman
,
H.
Cho
,
F.
Blanco
,
G.
García
,
P.
Limão-Vieira
, and
O.
Ingólfsson
, “
Cross section data sets for electron collisions with H2, O2, CO, CO2, N2 O and H2 O
,”
Eur. Phys. J. D
66
,
36
(
2012
).
33.
D.
Duflot
,
M.
Hoshino
,
P.
Limão-Vieira
,
A.
Suga
,
H.
Kato
, and
H.
Tanaka
, “
BF3 valence and Rydberg states as probed by electron energy loss spectroscopy and ab initio calculations
,”
J. Phys. Chem. A
118
,
10955
-
10966
(
2014
).
34.
M.
Nobre
,
A.
Fernandes
,
F. F.
da Silva
,
R.
Antunes
,
D.
Almeida
,
V.
Kokhan
,
S. V.
Hoffmann
,
N. J.
Mason
,
S.
Eden
, and
P.
Limão-Vieira
, “
The VUV electronic spectroscopy of acetone studied by synchrotron radiation
,”
Phys. Chem. Chem. Phys.
10
,
550
560
(
2008
).
35.
C. Y. R.
Wu.
,
F. Z.
Chen
, and
D. L.
Judge
, “
Temperature-dependent photoabsorption cross sections of OCS in the 200–260 nm
,”
J. Quant. Spectrosc. Radiat. Transfer
61
,
265
271
(
1999
).
36.
J. W.
Rabalais
,
J. M.
McDonald
,
V.
Scherr
, and
S. P.
McGlynn
, “
Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic groupings containing sixteen valence electrons
,”
Chem. Rev.
71
,
73
108
(
1971
).
37.
F. M.
Matsunaga
and
K.
Watanabe
, “
Ionization potential and absorption coefficient of COS
,”
J. Chem. Phys.
46
,
4457
4459
(
1967
).
38.
W. F.
Chan
,
G.
Cooper
, and
C. E.
Brion
, “
Absolute optical oscillator-strengths for the electronic excitation of atoms at high-resolution–experimental methods and measurements for helium
,”
Phys. Rev. A
44
,
186
-
204
(
1991
).
39.
D.
Suzuki
,
H.
Kato
,
M.
Ohkawa
,
K.
Anzai
,
H.
Tanaka
,
P.
Limão-Vieira
,
L.
Campbell
, and
M. J.
Brunger
, “
Electron excitation of the Schumann–Runge continuum, longest band, and second band electronic states in O2
,”
J. Chem. Phys.
134
,
064311
(
2011
).
40.
S.
Eden
,
P.
Limão-Vieira
,
S. V.
Hoffmann
, and
N. J.
Mason
, “
VUV spectroscopy of CH3Cl and CH3I
,”
Chem. Phys.
331
,
232
-
244
(
2007
).
41.
Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling, Evaluation number 12, NASA, Jet Propulsion Laboratory, JPL Publication 97–94, January 15, 1997.
42.
P.
Limão-Vieira
,
S.
Eden
,
P. A.
Kendall
,
N. J.
Mason
, and
S. V.
Hoffmann
, “
VUV photo-absorption cross-section for CCl2F2
,”
Chem. Phys. Lett.
364
,
535
541
(
2002
).
43.
V.
Saheb
,
M.
Alizadeh
,
F.
Rezaei
, and
S.
Shahidi
, “
Quantum chemical and theoretical kinetics studies on the reaction of carbonyl sulfide with H, OH and O (3P)
,”
Comput. Theo. Chem.
994
,
25
33
(
2012
).
You do not currently have access to this content.