Oxide/water interfaces are ubiquitous in a wide variety of applications and the environment. Despite this ubiquity, and attendant decades of study, gaining molecular level insight into water/oxide interaction has proven challenging. In part, this challenge springs from a lack of tools to concurrently characterize changes in surface structure (i.e., water/oxide interaction from the perspective of the solid) and O—H population and local environment (i.e., water/oxide interaction from the water perspective). Here, we demonstrate the application of surface specific vibrational spectroscopy to the characterization of the interaction of the paradigmatic α-Al2O3(0001) surface and water. By probing both the interfacial Al—O (surface phonon) and O—H spectral response, we characterize this interaction from both perspectives. Through electronic structure calculation, we assign the interfacial Al—O response and rationalize its changes on surface dehydroxylation and reconstruction. Because our technique is all-optical and interface specific, it is equally applicable to oxide surfaces in vacuum, ambient atmospheres and at the solid/liquid interface. Application of this approach to additional alumina surfaces and other oxides thus seems likely to significantly expand our understanding of how water meets oxide surfaces and thus the wide variety of phenomena this interaction controls.

1.
V. E.
Henrich
and
P. A.
Cox
,
The Surface Science of Metal Oxides
(
Cambridge University Press
,
1996
).
2.
G. E.
Brown
,
V. E.
Henrich
,
W. H.
Casey
,
D. L.
Clark
,
C.
Eggleston
,
A.
Felmy
,
D. W.
Goodman
,
M.
Grätzel
,
G.
Maciel
, and
M. I.
McCarthy
,
Chem. Rev.
99
,
77
(
1999
).
3.
H. A.
Al-Abadleh
and
V. H.
Grassian
,
Surf. Sci. Rep.
52
,
63
(
2003
).
4.
U.
Diebold
,
S.-C.
Li
, and
M.
Schmid
,
Annu. Rev. Phys. Chem.
61
,
129
(
2010
).
5.
T.
Hiemstra
,
W. H.
van Riemsdijk
, and
G. H.
Bolt
,
J. Colloid Interface Sci.
133
,
91
(
1989
).
6.
T.
Hiemstra
and
W. H.
Van Riemsdijk
,
J. Colloid Interface Sci.
179
,
488
(
1996
).
7.
D. A.
Sverjensky
,
Geochim. Cosmochim. Acta
69
,
225
(
2005
).
8.
J. W.
Elam
,
C. E.
Nelson
,
M. A.
Cameron
,
M. A.
Tolbert
, and
S. M.
George
,
J. Phys. Chem. B
102
,
7008
(
1998
).
9.
P.
Guenard
,
G.
Renaud
,
A.
Barbier
, and
M.
Gautier-Soyer
,
Surf. Rev. Lett.
5
,
321
(
1998
).
11.
M.
Ricci
,
P.
Spijker
,
F.
Stellacci
,
J.-F.
Molinari
, and
K.
Voïtchovsky
,
Langmuir
29
,
2207
(
2013
).
12.
I.
Siretanu
,
D.
Ebeling
,
M. P.
Andersson
,
S. L. S.
Stipp
,
A.
Philipse
,
M. C.
Stuart
,
D.
van den Ende
, and
F.
Mugele
,
Sci. Rep.
4
,
4954
(
2014
).
13.
H. A.
Al-Abadleh
and
V. H.
Grassian
,
Langmuir
19
,
341
(
2003
).
14.
A. C.
Thomas
and
H. H.
Richardson
,
J. Phys. Chem. C
112
,
20033
(
2008
).
15.
16.
C. D.
Bain
,
J. Chem. Soc., Faraday Trans.
91
,
1281
(
1995
).
17.
K. B.
Eisenthal
,
Chem. Rev.
96
,
1343
(
1996
).
18.
M. J.
Shultz
,
C.
Schnitzer
,
D.
Simonelli
, and
S.
Baldelli
,
Int. Rev. Phys. Chem.
19
,
123
(
2000
).
19.
Z.
Chen
,
Y. R.
Shen
, and
G. A.
Somorjai
,
Annu. Rev. Phys. Chem.
53
,
437
(
2002
).
20.
G. L.
Richmond
,
Chem. Rev.
102
,
2693
(
2002
).
21.
H.-F.
Wang
,
W.
Gan
,
R.
Lu
,
Y.
Rao
, and
B.-H.
Wu
,
Int. Rev. Phys. Chem.
24
,
191
(
2005
).
22.
S.
Gopalakrishnan
,
D. F.
Liu
,
H. C.
Allen
,
M.
Kuo
, and
M. J.
Shultz
,
Chem. Rev.
106
,
1155
(
2006
).
23.
Y. R.
Shen
and
V.
Ostroverkhov
,
Chem. Rev.
106
,
1140
(
2006
).
24.
S.
Ye
and
M.
Osawa
,
Chem. Lett.
38
,
386
(
2009
).
27.
J. F. D.
Liljeblad
and
E.
Tyrode
,
J. Phys. Chem. C
116
,
22893
(
2012
).
28.
E.
Tyrode
and
J. F.
Liljeblad
,
J. Phys. Chem. C
117
,
1780
(
2013
).
29.
S.
Kataoka
,
M.
Gurau
,
F.
Albertorio
,
M.
Holden
,
S.
Lim
,
R.
Yang
, and
P.
Cremer
,
Langmuir
20
,
1662
(
2004
).
30.
I.
Li
,
J.
Bandura
, and
M. J.
Shultz
,
Langmuir
20
,
10474
(
2004
).
31.
V.
Ostroverkhov
,
G. A.
Waychunas
, and
Y.
Shen
,
Chem. Phys. Lett.
386
,
144
(
2004
).
32.
C.
Wang
,
H.
Groenzin
, and
M.
Shultz
,
J. Phys. Chem. B
108
,
265
(
2004
).
33.
V.
Ostroverkhov
,
G. A.
Waychunas
, and
Y.
Shen
,
Phys. Rev. Lett.
94
,
046102
(
2005
).
34.
L.
Zhang
,
C.
Tian
,
G. A.
Waychunas
, and
Y. R.
Shen
,
J. Am. Chem. Soc.
130
,
7686
(
2008
).
35.
M.
Flörsheimer
,
K.
Kruse
,
R.
Polly
,
A.
Abdelmonem
,
B.
Schimmelpfennig
,
R.
Klenze
, and
T.
Fanghänel
,
Langmuir
24
,
13434
(
2008
).
36.
B.
Braunschweig
,
S.
Eissner
, and
W.
Daum
,
J. Phys. Chem. C
112
,
1751
(
2008
).
37.
W. T.
Liu
and
Y. R.
Shen
,
Phys. Rev. Lett.
101
,
016101
(
2008
).
38.
J. A.
Kelber
,
Surf. Sci. Rep.
62
,
271
(
2007
).
39.
C.
Morterra
and
G.
Magnacca
,
Catal. Today
27
,
497
(
1996
).
40.
W. T.
Liu
and
Y. R.
Shen
,
Phys. Rev. B
78
,
024302
(
2008
).
41.
Y.
Tong
,
Y.
Zhao
,
N.
Li
,
M.
Osawa
,
P. B.
Davies
, and
S.
Ye
,
J. Chem. Phys.
133
,
034704
(
2010
).
42.
Y.
Tong
,
A.
Vila Verde
, and
R. K.
Campen
,
J. Phys. Chem. B
117
,
11753
(
2013
).
43.
H.
Held
,
A.
Lvovsky
,
X.
Wei
, and
Y.
Shen
,
Phys. Rev. B
66
,
205110
(
2002
).
44.
C. D.
Bain
,
P. B.
Davies
,
T. H.
Ong
,
R. N.
Ward
, and
M. A.
Brown
,
Langmuir
7
,
1563
(
1991
).
45.
A. S.
Barker
, Jr.
,
Phys. Rev.
132
,
1474
(
1963
).
46.
E. D.
Palik
,
Handbook of Optical Constants of Solids: Index
(
Elsevier
,
1998
), Vol.
3
.
47.
M.
Schubert
,
T. E.
Tiwald
, and
C. M.
Herzinger
,
Phys. Rev. B
61
,
8187
(
2000
).
48.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
49.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
50.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
51.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
52.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
48
,
13115
(
1993
).
53.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
55.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
56.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
57.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
58.
P.
Thompson
,
D. E.
Cox
, and
J. B.
Hastings
,
J. Appl. Crystallogr.
20
,
79
(
1987
).
59.
K. C.
Hass
,
W. F.
Schneider
,
A.
Curioni
, and
W.
Andreoni
,
Science
282
,
265
(
1998
).
60.
V. A.
Ranea
,
I.
Carmichael
, and
W. F.
Schneider
,
J. Phys. Chem. C
113
,
2149
(
2009
).
61.
Z.
Łodziana
,
J. K.
Nørskov
, and
P.
Stoltze
,
J. Chem. Phys.
118
,
11179
(
2003
).
62.
C.
Klein
and
C. S.
Hurlburt
, Jr.
,
Manual of Mineralogy
(
John Wiley and Sons Inc.
,
New York, Chichester, Brisbane, Toronto, Singapore
,
1993
), Vol.
21
.
63.
S. P. S.
Porto
and
R. S.
Krishnan
,
J. Chem. Phys.
47
,
1009
(
1967
).
64.
M. C.
Munisso
,
W.
Zhu
, and
G.
Pezzotti
,
Phys. Status Solidi B
246
,
1893
(
2009
).
65.
C.
Hirose
,
N.
Akamatsu
, and
K.
Domen
,
Appl. Spectrosc.
46
,
1051
(
1992
).
66.
S.
Malyk
,
F. Y.
Shalhout
,
L. E.
O’Leary
,
N. S.
Lewis
, and
A. V.
Benderskii
,
J. Phys. Chem. C
117
,
935
(
2013
).
67.
T.
Kurita
,
K.
Uchida
, and
A.
Oshiyama
,
Phys. Rev. B
82
,
155319
(
2010
).
68.
E. A.
Soares
,
M. A.
Van Hove
,
C. F.
Walters
, and
K. F.
McCarty
,
Phys. Rev. B
65
,
195405
(
2002
).
69.
P.
Liu
,
T.
Kendelewicz
,
G. E.
Brown
,
E. J.
Nelson
, and
S. A.
Chambers
,
Surf. Sci.
417
,
53
(
1998
).
70.
C.
Niu
,
K.
Shepherd
,
D.
Martini
,
J.
Tong
,
J. A.
Kelber
,
D. R.
Jennison
, and
A.
Bogicevic
,
Surf. Sci.
465
,
163
(
2000
).
71.
J. A.
Kelber
,
C.
Niu
,
K.
Shepherd
,
D. R.
Jennison
, and
A.
Bogicevic
,
Surf. Sci.
446
,
76
(
2000
).
72.
Q.
Fu
,
T.
Wagner
, and
M.
Rühle
,
Surf. Sci.
600
,
4870
(
2006
).
73.
H.
Kirsch
,
J.
Wirth
,
Y.
Tong
,
M.
Wolf
,
P.
Saalfrank
, and
R. K.
Campen
,
J. Phys. Chem. C
118
,
13623
(
2014
).
74.
P. J.
Eng
,
T. P.
Trainor
,
G. E.
Brown
, Jr.
,
G. A.
Waychunas
,
M.
Newville
,
S. R.
Sutton
, and
M. L.
Rivers
,
Science
288
,
1029
(
2000
).
75.
M.
Liehr
,
P. A.
Thiry
,
J. J.
Pireaux
, and
R.
Caudano
,
J. Vac. Sci. Technol. A
2
,
1079
(
1984
).
76.
R.
Fuchs
and
K. L.
Kliewer
,
Phys. Rev.
140
,
A2076
(
1965
).
77.
A. A.
Lucas
and
M.
S̆unjić
,
Prog. Surf. Sci.
2
,
75
(
1972
).
78.
M.
Frank
,
K.
Wolter
,
N.
Magg
,
M.
Heemeier
,
R.
Kühnemuth
,
M.
Bäumer
, and
H.-J.
Freund
,
Surf. Sci.
492
,
270
(
2001
).
79.
X. G.
Wang
,
A.
Chaka
, and
M.
Scheffler
,
Phys. Rev. Lett.
84
,
3650
(
2000
).
80.
A.
Marmier
and
S. C.
Parker
,
Phys. Rev. B
69
,
115409
(
2004
).
81.
J.-C.
Lavalley
and
M.
Benaissa
,
J. Chem. Soc., Chem. Commun.
1984
,
908
.
82.
C.
Morterra
,
C.
Emanuel
,
G.
Cerrato
, and
G.
Magnacca
,
J. Chem. Soc., Faraday Trans.
88
,
339
(
1992
).
83.
C.
Contescu
,
J.
Jagiello
, and
J. A.
Schwarz
,
Langmuir
9
,
1754
(
1993
).
84.
J.
Lützenkirchen
,
R.
Zimmermann
,
T.
Preočanin
,
A.
Filby
,
T.
Kupcik
,
D.
Küttner
,
A.
Abdelmonem
,
D.
Schild
,
T.
Rabung
, and
M.
Plaschke
,
Adv. Colloid Interface Sci.
157
,
61
(
2010
).
85.
J.
Westall
and
H.
Hohl
,
Adv. Colloid Interface Sci.
12
,
265
(
1980
).
86.
G.
Sposito
,
Adv. Colloid Interface Sci.
91
,
329
(
1983
).
87.
T.
Hiemstra
,
J. C. M.
de Wit
, and
W. H.
van Riemsdijk
,
Adv. Colloid Interface Sci.
133
,
105
(
1989
).
88.
M. L.
Machesky
,
M.
Predota
,
D. J.
Wesolowski
,
L.
Vlcek
,
P. T.
Cummings
,
J.
Rosenqvist
,
M. K.
Ridley
,
J. D.
Kubicki
,
A. V.
Bandura
,
N.
Kumar
, and
J. O.
Sofo
,
Langmuir
24
,
12331
(
2008
).
89.
See supplementary material at http://dx.doi.org/10.1063/1.4906346 for details of line shape model and data analysis, azimuthal dependent VSF spectra of the hydroxylated sample under the ssp polarization condition in the Al—O frequency region and parameters resulting from fits to this data, parameters resulting from the analysis of VSF spectra collected from the 1-Al terminated sample in the Al—O frequency region under the ssp polarization condition, VSF spectra and parameters resulting from fits of VSF spectra collected from both the hydroxylated and 1-Al terminated samples under the pps, psp, spp and ppp polarization conditions in the Al—O frequency region, parameters resulting from analysis of the VSF spectra collected from the 1-Al terminated and hydroxylated samples in the OH stretch region, a simulated EELS spectrum for the α-Al2O3(0001) surface, additional illustrations of atom displacements associated with calculated normal modes and details of the selection criteria employed to determine surface phonons.

Supplementary Material

You do not currently have access to this content.