To have a quantitative understanding about the origin of conformation stability for molecular systems is still an unaccomplished task. Frontier orbital interactions from molecular orbital theory and energy partition schemes from density functional reactivity theory are the two approaches available in the literature that can be used for this purpose. In this work, we compare the performance of these approaches for a total of 48 simple molecules. We also conduct studies to flexibly bend bond angles for water, carbon dioxide, borane, and ammonia molecules to obtain energy profiles for these systems over a wide range of conformations. We find that results from molecular orbital interactions using frontier occupied orbitals such as the highest occupied molecular orbital and its neighbors are only qualitatively, at most semi-qualitatively, trustworthy. To obtain quantitative insights into relative stability of different conformations, the energy partition approach from density functional reactivity theory is much more reliable. We also find that the electrostatic interaction is the dominant descriptor for conformational stability, and steric and quantum effects are smaller in contribution but their contributions are indispensable. Stable molecular conformations prefer to have a strong electrostatic interaction, small molecular size, and large exchange-correlation effect. This work should shed new light towards establishing a general theoretical framework for molecular stability.

1.
A. D.
Walsh
,
J. Chem. Soc.
1953
,
2260
.
2.
R. S.
Milliken
,
J. Am. Chem. Soc.
77
,
884
(
1955
).
3.
P. W.
Atkins
,
Molecular Quantum Mechanics
(
Clarendon Press, Oxford
,
Massachusetts
,
1970
).
4.
T. A.
Albright
,
J. K.
Burdett
, and
M.-H.
Whangbo
,
Orbital Interactions in Chemistry
(
John Wiley & Sons
,
Hoboken, New Jersey
,
2013
).
5.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory for Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
6.
P.
Geerlings
,
F.
De Proft
, and
W.
Langenaeker
,
Chem. Rev.
103
,
1793
(
2003
).
7.
P. K.
Chattaraj
,
U.
Sarkar
, and
D. R.
Roy
,
Chem. Rev.
106
,
2065
(
2006
).
8.
S. B.
Liu
,
Acta Phys.-Chim. Sin.
25
,
590
(
2009
).
9.
S. B.
Liu
,
J. Chem. Phys.
126
,
244103
(
2007
).
10.
S. B.
Liu
,
J. Chem. Phys.
126
,
191107
(
2007
).
11.
R. O.
Esquivel
,
S. B.
Liu
,
J. C.
Angulo
,
J. S.
Dehesa
,
J.
Antolin
, and
M.
Molina-Espiritu
,
J. Phys. Chem. A
115
,
4406
(
2011
).
12.
S. B.
Liu
and
N.
Govind
,
J. Phys. Chem. A
112
,
6690
(
2008
).
13.
S. B.
Liu
,
N.
Govind
, and
L. G.
Pedersen
,
J. Chem. Phys.
129
,
094104
(
2008
).
14.
M.
Torrent-Sucarrat
,
S. B.
Liu
, and
F.
De Proft
,
J. Phys. Chem. A
113
,
3698
(
2009
).
15.
S. B.
Liu
,
H.
Hu
, and
L. G.
Pedersen
,
J. Phys. Chem. A
114
,
5913
(
2010
).
16.
D. H.
Ess
,
S. B.
Liu
, and
F.
De Proft
,
J. Phys. Chem. A
114
,
12952
(
2010
).
17.
V. G.
Tsirelson
,
A. I.
Stash
, and
S. B.
Liu
,
J. Chem. Phys.
133
,
114110
(
2010
).
18.
Y.
Huang
,
A. G.
Zhong
,
Q. S.
Yang
, and
S. B.
Liu
,
J. Chem. Phys.
134
,
084103
(
2011
).
19.
D. B.
Zhao
,
C. Y.
Rong
,
S.
Jenkins
,
S. R.
Kirk
,
D. L.
Yin
, and
S. B.
Liu
,
Acta Phys.-Chim. Sin.
29
,
43
(
2013
).
20.
V. G.
Tsirelson
,
A. I.
Stash
, and
S. B.
Liu
,
Comput. Theor. Chem.
1006
,
92
(
2013
).
21.
Y. J.
Wang
,
D. B.
Zhao
,
C. Y.
Rong
, and
S. B.
Liu
,
Acta Phys.-Chim. Sin.
29
,
2173
(
2014
).
22.
D.
Fang
,
J.-P.
Piquemal
,
S. B.
Liu
, and
G. A.
Cisneros
,
Theor. Chem. Acc.
133
,
1484
(
2014
).
23.
S. B.
Liu
,
J. Phys. Chem. A
117
,
962
(
2013
).
24.
25.
M.
Levy
and
H.
Ou-Yang
,
Phys. Rev. A
38
,
625
(
1988
).
26.
A.
Holas
and
N. H.
March
,
Phys. Rev. A
44
,
5521
(
1991
).
27.
C. F.
von Weizsäcker
,
Z. Phys.
96
,
431
(
1935
).
29.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
30.
A.
Nagy
,
R. G.
Parr
, and
S. B.
Liu
,
Phys. Rev. A
53
,
3117
(
1996
).
31.
S. B.
Liu
and
R. G.
Parr
,
Phys. Rev. A
53
,
2211
(
1996
).
34.
S. B.
Liu
and
R. G.
Parr
,
Phys. Rev. A
55
,
1792
(
1997
).
35.
S. B.
Liu
,
Parr, Chem. Phys. Lett.
278
,
341
(
1997
).
36.
S. B.
Liu
,
R. C.
Morrison
, and
R. G.
Parr
,
J. Chem. Phys.
125
,
174109
(
2006
).
37.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
38.
C. T.
Lee
,
W. T.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
39.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
40.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, Gaussian 09, Revision D 01, Gaussian, Inc., Wallingford, CT, 2009.
You do not currently have access to this content.