Consider a two-dimensional capped capillary pore formed by capping two parallel planar walls with a third wall orthogonal to the two planar walls. This system reduces to a slit pore sufficiently far from the capping wall and to a single planar wall when the side walls are far apart. Not surprisingly, wetting of capped capillaries is related to wetting of slit pores and planar walls. For example, the wetting temperature of the capped capillary provides the boundary between first-order and continuous transitions to condensation. We present a numerical investigation of adsorption in capped capillaries of mesoscopic widths based on density functional theory. The fluid-fluid and fluid-substrate interactions are given by the pairwise Lennard-Jones potential. We also perform a parametric study of wetting in capped capillaries by a liquid phase by varying the applied chemical potential, temperature, and pore width. This allows us to construct surface phase diagrams and investigate the complicated interplay of wetting mechanisms specific to each system, in particular, the dependence of capillary wetting temperature on the pore width.

1.
M.
Rauscher
and
S.
Dietrich
,
Annu. Rev. Mater. Res.
38
,
143
(
2008
).
2.
3.
S.
Herminghaus
,
M.
Brinkman
, and
R.
Seeman
,
Annu. Rev. Mater. Res.
38
,
101
(
2008
).
4.
S.
Mandal
,
S.
Lang
,
M.
Gross
,
M.
Oettel
,
D.
Raabe
,
T.
Franosch
, and
F.
Varnik
,
Nature
5
,
4435
(
2014
).
5.
E.
Chiavazzo
,
M.
Fasano
,
P.
Asinari
, and
P.
Decuzzi
,
Nat. Commun.
5
,
4565
(
2014
).
6.
Z.
Gou
and
W.
Liu
,
Plant Sci.
172
,
1103
(
2007
).
8.
B. D.
Goddard
,
A.
Nold
,
N.
Savva
,
P.
Yatsyshin
, and
S.
Kalliadasis
,
J. Phys.: Condens. Matter
25
,
035101
(
2013
).
9.
J.
Reinhardt
,
A.
Scacchi
, and
J. M.
Brader
,
J. Chem. Phys.
140
,
144901
(
2014
).
10.
J.
Bleibel
,
A.
Dominguez
,
M.
Oettel
, and
S.
Dietrich
,
Soft Matter
10
,
4091
(
2014
).
11.
I.
Gerlach
,
M.
Kawase
, and
K.
Miura
,
Microporous Mesoporous Mater.
122
,
79
(
2009
).
12.
A.
Calvo
,
B.
Yameen
,
F. J.
Williams
,
G. J. A. A.
Soler-Illia
, and
O.
Azzaroni
,
J. Am. Chem. Soc.
131
,
10866
(
2009
).
13.
M.
Nosonvsky
and
B.
Bhushan
,
Curr. Opin. Colloid Interface Sci.
14
,
270
(
2009
).
14.
A.
Nikolov
and
D.
Wasan
,
Eur. Phys. J.: Spec. Top.
197
,
325
(
2011
).
15.
W. F.
Saam
,
J. Low Temp. Phys.
157
,
77
(
2009
).
16.
D.
Bonn
and
D.
Ross
,
Rep. Prog. Phys.
64
,
1085
(
2001
).
17.
M.
Schick
, in
Les Houches 1988. Liquids at Interfaces
, edited by
J.
Charvolin
,
J. F.
Joanny
, and
J.
Zinn-Justin
(
North-Holland
,
1990
), p.
415
.
18.
S.
Dietrich
, in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic Press
,
1988
), p.
2
.
19.
A. O.
Parry
,
C.
Rascon
,
N. B.
Wilding
, and
R.
Evans
,
Phys. Rev. Lett.
98
,
226101
(
2007
).
20.
P.
Yatsyshin
,
N.
Savva
, and
S.
Kalliadasis
,
Phys. Rev. E
87
,
020402(R)
(
2013
).
21.
A.
Malijevský
,
J. Chem. Phys.
137
,
214704
(
2012
).
22.
C.
Rascon
,
A.
Parry
,
R.
Nurnberg
,
A.
Pozzato
,
M.
Tormen
,
L.
Bruschi
, and
G.
Mistura
,
J. Phys.: Condens. Matter
25
,
192101
(
2013
).
23.
J. F.
Lutsko
,
Adv. Chem. Phys.
(
John Wiley & Sons
,
2010
), p.
1
.
24.
J.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Elsevier
,
2006
).
25.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
26.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
4714
(
1967
).
27.
R.
Roth
,
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
28.
A.
Nold
,
D. N.
Sibley
,
B. D.
Goddard
, and
S.
Kalliadasis
,
Phys. Fluids
26
,
072001
(
2014
).
29.
D. E.
Sullivan
and
M. M.
Telo da Gama
, in
Fluid Interfacial Phenomena
, edited by
C. A.
Croxton
(
Wiley
,
New York
,
1986
), p.
45
.
30.
P.
Tarazona
,
U. M. B.
Marconi
, and
R.
Evans
,
Mol. Phys.
60
,
573
(
1987
).
31.
R.
Evans
, in
Les Houches 1988. Liquids at Interfaces
, edited by
J.
Charvolin
,
J. F.
Joanny
, and
J.
Zinn-Justin
(
North-Holland
,
1990
), p.
1
.
32.
A.
Chizmeshya
,
M. W.
Cole
, and
Z.
Zaremba
,
J. Low Temp. Phys.
110
,
677
(
1998
).
33.
A.
Nold
,
A.
Malijevský
, and
S.
Kalliadasis
,
Phys. Rev. E
84
,
021603
(
2011
).
34.
J. R.
Henderson
, in
Fundamentals of Inhomogeneous Fluids
, edited by
D.
Henderson
(
Marcel Dekker
,
New York
,
1992
), p.
23
.
35.
P.
Yatsyshin
,
N.
Savva
, and
S.
Kalliadasis
,
J. Chem. Phys.
136
,
124113
(
2012
).
36.
M. G.
Knepley
,
D. A.
Karpeev
,
S.
Davidovits
,
R. S.
Eisenberg
, and
D.
Gillespie
,
J. Chem. Phys.
132
,
124101
(
2010
).
37.
L. J. D.
Frink
,
A. G.
Salinger
,
M. P.
Sears
,
J. D.
Weinhold
, and
A. L.
Frischknecht
,
J. Phys.: Condens. Matter
14
,
12167
(
2002
).
38.
L. J. D.
Frink
and
A. G.
Salinger
,
J. Comput. Phys.
159
,
407
(
2000
).
39.
N.
Savva
and
S.
Kalliadasis
,
Phys. Fluids
21
,
092102
(
2009
).
40.
N.
Savva
and
S.
Kalliadasis
,
Europhys. Lett.
94
,
64004
(
2011
).
41.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
(
Dover Publications
,
2001
).
42.
L. N.
Trefethen
,
Spectral Methods in MATLAB
(
SIAM
,
2000
).
43.
N.
Hale
and
L. N.
Trefethen
,
SIAM J. Numer. Anal.
46
(
2
),
930
(
2008
).
44.
S.
Dhawan
,
M. E.
Reimel
,
L. E.
Scriven
, and
H. T.
Davis
,
J. Chem. Phys.
94
,
4479
4489
(
1991
).
45.
A. G.
Salinger
and
L. J. D.
Frink
,
J. Chem. Phys.
118
(
16
),
7457
(
2003
).
46.
K.
Rejmer
,
S.
Dietrich
, and
M.
Napiorkowski
,
Phys. Rev. E
60
,
4027
(
1999
).
47.
E. H.
Hauge
and
M.
Schick
,
Phys. Rev. B
27
,
4288
(
1983
).
48.
J. C.
Lagarias
,
J. A.
Reeds
,
M. H.
Wright
, and
P. E.
Wright
,
SIAM J. Optim.
9
,
112
(
1998
).
49.
B. D.
Goddard
,
G. A.
Pavliotis
, and
S.
Kalliadasis
,
Multiscale Model. Simul.
10
,
633
(
2012
).
50.
B. D.
Goddard
,
A.
Nold
,
N.
Savva
,
G. A.
Pavliotis
, and
S.
Kalliadasis
,
Phys. Rev. Lett.
109
,
120603
(
2012
).
51.
B. D.
Goddard
,
A.
Nold
, and
S.
Kalliadasis
,
J. Chem. Phys.
138
,
144904
(
2013
).
52.
53.
A.
Pereira
and
S.
Kalliadasis
,
J. Fluid Mech.
692
,
53
(
2012
).
54.
C.
Ebner
and
W. F.
Saam
,
Phys. Rev. Lett.
38
,
1486
(
1977
).
You do not currently have access to this content.