We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.

1.
J.
Villa
and
A.
Warshel
, “
Energetics and dynamics of enzymatic reactions
,”
J. Phys. Chem. B
105
,
7887
7907
(
2001
).
2.
M.
Strajbl
,
A.
Shurki
,
M.
Kato
, and
A.
Warshel
, “
Apparent NAC effect in chorismate mutase reflects electrostatic transition state stabilization
,”
J. Am. Chem. Soc.
125
,
10228
10237
(
2003
).
3.
A.
Warshel
,
P. K.
Sharma
,
M.
Kato
,
Y.
Xiang
,
H.
Liu
, and
M. H.
Olsson
, “
Electrostatic basis for enzyme catalysis
,”
Chem. Rev.
106
,
3210
3235
(
2006
).
4.
S.
Hammes-Schiffer
, “
Catalytic efficiency of enzymes: A theoretical analysis
,”
Biochemistry
52
,
2012
2020
(
2013
).
5.
C. T.
Liu
,
J. P.
Layfield
,
R. J.
Stewart
,
J. B.
French
,
P.
Hanoian
,
J. B.
Asbury
,
S.
Hammes-Schiffer
, and
S. J.
Benkovic
, “
Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase
,”
J. Am. Chem. Soc.
136
,
10349
10360
(
2014
).
6.
M.
Drobizhev
,
N. S.
Makarov
,
S. E.
Tillo
,
T. E.
Hughes
, and
A.
Rebane
, “
Two-photon absorption properties of fluorescent proteins
,”
Nat. Methods
8
,
393
399
(
2011
).
7.
J.-Y.
Hasegawa
,
K. J.
Fujimoto
, and
H.
Nakatsuji
, “
Color tuning in photofunctional proteins
,”
ChemPhysChem
12
,
3106
3115
(
2011
).
8.
N. H.
List
,
J. M. H.
Olsen
,
H. J. A.
Jensen
,
A. H.
Steindal
, and
J.
Kongsted
, “
Molecular-level insight into the spectral tuning mechanism of the DsRed chromophore
,”
J. Phys. Chem. Lett.
3
,
3513
3521
(
2012
).
9.
E. S.
Park
,
S. S.
Andrews
,
R. B.
Hu
, and
S. G.
Boxer
, “
Vibrational Stark spectroscopy in proteins: A probe and calibration for electrostatic fields
,”
J. Phys. Chem. B
103
,
9813
9817
(
1999
).
10.
H.
Lehle
,
J. M.
Kriegl
,
K.
Nienhaus
,
P.
Deng
,
S.
Fengler
, and
G. U.
Nienhaus
, “
Probing electric fields in protein cavities by using the vibrational Stark effect of carbon monoxide
,”
Biophys. J.
88
,
1978
1990
(
2005
).
11.
S. G.
Boxer
, “
Stark realities
,”
J. Phys. Chem. B
113
,
2972
2983
(
2009
).
12.
B. A.
Lindquist
,
K. E.
Furse
, and
S. A.
Corcelli
, “
Nitrile groups as vibrational probes of biomolecular structure and dynamics: An overview
,”
Phys. Chem. Chem. Phys.
11
,
8119
8132
(
2009
).
13.
L.
Xu
,
A. E.
Cohen
, and
S. G.
Boxer
, “
Electrostatic fields near the active site of human aldose reductase: 2. New inhibitors and complications caused by hydrogen bonds
,”
Biochemistry
50
,
8311
8322
(
2011
).
14.
C. G.
Bazewicz
,
J. S.
Lipkin
,
E. E.
Smith
,
M. T.
Liskov
, and
S. H.
Brewer
, “
Expanding the utility of 4-cyano-l-phenylalanine as a vibrational reporter of protein environments
,”
J. Phys. Chem. B
116
,
10824
10831
(
2012
).
15.
A. T.
Fafarman
,
P. A.
Sigala
,
J. P.
Schwans
,
T. D.
Fenn
,
D.
Herschlag
, and
S. G.
Boxer
, “
Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
E299
E308
(
2012
).
16.
H.
Kim
and
M.
Cho
, “
Infrared probes for studying the structure and dynamics of biomolecules
,”
Chem. Rev.
113
,
5817
5847
(
2013
).
17.
P. A.
Sigala
,
A. T.
Fafarman
,
J. P.
Schwans
,
S. D.
Fried
,
T. D.
Fenn
,
J. M. M.
Caaveiro
,
B.
Pybus
,
D.
Ringe
,
G. A.
Petsko
,
S. G.
Boxer
, and
D.
Herschlag
, “
Quantitative dissection of hydrogen bond-mediated proton transfer in the ketosteroid isomerase active site
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
E2552
E2561
(
2013
).
18.
P. R.
Callis
and
B. K.
Burgess
, “
Tryptophan fluorescence shifts in proteins from hybrid simulations: An electrostatic approach
,”
J. Phys. Chem. B
101
,
9429
9432
(
1997
).
19.
M.
Drobizhev
,
S.
Tillo
,
N. S.
Makarov
,
T. E.
Hughes
, and
A.
Rebane
, “
Color hues in red fluorescent proteins are due to internal quadratic Stark effect
,”
J. Phys. Chem. B
113
,
12860
12864
(
2009
).
20.
P. R.
Callis
, “
Exploring the electrostatic landscape of proteins with tryptophan fluorescence
,” in
Reviews in Fluorescence 2007
(
Springer
,
2009
), pp.
199
248
.
21.
O. K.
Asamoah
,
J. P.
Wuskell
,
L. M.
Loew
, and
F.
Bezanilla
, “
A fluorometric approach to local electric field measurements in a voltage-gated ion channel
,”
Neuron
37
,
85
97
(
2003
).
22.
M.
Drobizhev
,
J. N.
Scott
,
P. R.
Callis
, and
A.
Rebane
, “
All-optical sensing of the components of the internal local electric field in proteins
,”
IEEE Photonics J.
4
,
1996
2001
(
2012
).
23.
S. S.
Andrews
and
S. G.
Boxer
, “
Vibrational Stark effects of nitriles I. Methods and experimental results
,”
J. Phys. Chem. A
104
,
11853
11863
(
2000
).
24.
J.
Jeon
,
S.
Yang
,
J.-H.
Choi
, and
M.
Cho
, “
Computational vibrational spectroscopy of peptides and proteins in one and two dimensions
,”
Acc. Chem. Res.
42
,
1280
1289
(
2009
).
25.
J. M.
Olsen
,
K.
Aidas
, and
J.
Kongsted
, “
Excited states in solution through polarizable embedding
,”
J. Chem. Theory Comput.
6
,
3721
3734
(
2010
).
26.
J. M. H.
Olsen
and
J.
Kongsted
, “
Molecular properties through polarizable embedding
,”
Adv. Quantum Chem.
61
,
107
143
(
2011
).
27.
N. H.
List
,
F. M.
Pimenta
,
L.
Holmegaard
,
R. L.
Jensen
,
M.
Etzerodt
,
T.
Schwabe
,
J.
Kongsted
,
P. R.
Ogilby
, and
O.
Christiansen
, “
Effect of chromophore encapsulation on linear and nonlinear optical properties: The case of miniSOG, a protein-encased flavin
,”
Phys. Chem. Chem. Phys.
16
,
9950
9959
(
2014
).
28.
C.
Steinmann
,
J. M. H.
Olsen
, and
J.
Kongsted
, “
Nuclear magnetic shielding constants from quantum mechanical/molecular mechanical calculations using polarizable embedding: Role of the embedding potential
,”
J. Chem. Theory Comput.
10
,
981
988
(
2014
).
29.
L.
Wang
,
Z.
Zhang
,
A.
Brock
, and
P. G.
Schultz
, “
Addition of the keto functional group to the genetic code of Escherichia coli
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
56
61
(
2003
).
30.
S. D.
Fried
,
S.
Bagchi
, and
S. G.
Boxer
, “
Measuring electrostatic fields in both hydrogen-bonding and non-hydrogen-bonding environments using carbonyl vibrational probes
,”
J. Am. Chem. Soc.
135
,
11181
11192
(
2013
).
31.
J.-H.
Choi
and
M.
Cho
, “
Vibrational solvatochromism and electrochromism of infrared probe molecules containing C≡O, C≡N, C=O, or C–F vibrational chromophore
,”
J. Chem. Phys.
134
,
154513
(
2011
).
32.
S.
Krimm
and
J.
Bandekar
, “
Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins
,”
Adv. Protein Chem.
38
,
181
364
(
1986
).
33.
S. D.
Fried
and
S. G.
Boxer
, “
Evaluation of the energetics of the concerted acid-base mechanism in enzymatic catalysis: The case of ketosteroid isomerase
,”
J. Phys. Chem. B
116
,
690
697
(
2012
).
34.
J. M. H.
Olsen
, The Polarizable Embedding (PE) Library (Development Version), 2014.
35.
J. M. H.
Olsen
, “
Development of quantum chemical methods towards rationalization and optimal design of photoactive proteins
,” Ph.D. thesis, University of Southern Denmark, Odense, Denmark, 2012.
36.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenæs
,
S.
Høst
,
I.-M.
Høyvik
,
M. F.
Iozzi
,
B.
Jansik
,
H. J. A.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjærgaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnæs
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V.
Rybkin
,
P.
Salek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
, “
The Dalton quantum chemistry program system
,”
WIREs Comput. Mol. Sci.
4
,
269
(
2014
).
37.
B.
Gao
,
A. J.
Thorvaldsen
, and
K.
Ruud
, “
GEN1INT: A unified procedure for the evaluation of one-electron integrals over Gaussian basis functions and their geometric derivatives
,”
Int. J. Quantum Chem.
111
,
858
872
(
2011
).
38.
B.
Gao
and
A. J.
Thorvaldsen
, Gen1Int version 0.2.1, 2012, http://repo.ctcc.no/projects/gen1int.
39.
S.
Caprasecca
,
S.
Jurinovich
,
L.
Viani
,
C.
Curutchet
, and
B.
Mennucci
, “
Geometry optimization in polarizable QM/MM models: The induced dipole formulation
,”
J. Chem. Theory Comput.
10
(
4
),
1588
1598
(
2014
).
40.
H.
Li
and
M. S.
Gordon
, “
Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations
,”
J. Chem. Phys.
126
,
124112
(
2007
).
41.
J. L
Payton
,
S. M.
Morton
,
J. E.
Moore
, and
L.
Jensen
, “
A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy
,”
J. Chem. Phys.
136
,
214103
(
2012
).
42.
X. S.
Raymond
,
Elementary Introduction to the Theory of Pseudodifferential Operators
(
CRC Press
,
Boca Raton, Florida
,
1991
).
43.
T. U.
Helgaker
,
J.
Almlöf
,
H. J. A.
Jensen
, and
P.
Jørgensen
, “
Molecular Hessians for large-scale MCSCF wave functions
,”
J. Chem. Phys.
84
,
6266
6279
(
1986
).
44.
J. G.
Ángyán
, “
Wigners (2n + 1) rule for nonlinear Schrödinger equations
,”
J. Math. Chem.
46
,
1
14
(
2009
).
45.
P.
Pulay
, “
Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules: I. Theory
,”
Mol. Phys.
17
,
197
(
1969
).
46.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
47.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, in
Intermolecular Forces
, edited by
B.
Pullman
(
Reidel
,
Dordrecht
,
1981
).
48.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
49.
C.
Caleman
,
P. J.
van Maaren
,
M.
Hong
,
J. S.
Hub
,
L. T.
Costa
, and
D.
van der Spoel
, “
Force field benchmark of organic liquids: Density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant
,”
J. Chem. Theory Comput.
8
,
61
74
(
2012
).
50.
D.
van der Spoel
,
P. J.
van Maaren
, and
C.
Caleman
, “
GROMACS molecule & liquid database
,”
Bioinformatics
28
,
752
753
(
2012
).
51.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N ⋅ log (N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
52.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
53.
M. T. P.
Beerepoot
,
A. H.
Steindal
,
K.
Ruud
,
J. M. H.
Olsen
, and
J.
Kongsted
, “
Convergence of environment polarization effects in multiscale modeling of excitation energies
,”
Comput. Theor. Chem.
1040–1041
,
304
311
(
2014
).
54.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
,
5179
5197
(
1995
).
55.
L.
Gagliardi
,
R.
Lindh
, and
G.
Karlström
, “
Local properties of quantum chemical systems: The LoProp approach
,”
J. Chem. Phys.
121
,
4494
4500
(
2004
).
56.
G.
Karlström
,
R.
Lindh
,
P.-Å.
Malmqvist
,
B. O.
Roos
,
U.
Ryde
,
V.
Veryazov
,
P.-O.
Widmark
,
M.
Cossi
,
B.
Schimmelpfennig
,
P.
Neogrady
, and
L.
Seijo
, “
MOLCAS: A program package for computational chemistry
,”
Comput. Mater. Sci.
28
,
222
239
(
2003
).
57.
F.
Aquilante
,
L.
De Vico
,
N.
Ferré
,
G.
Ghigo
,
P.-Å.
Malmqvist
,
P.
Neogrády
,
T. B.
Pedersen
,
M.
Pitoňák
,
M.
Reiher
,
B. O.
Roos
,
L.
Serrano-Andrés
,
M.
Urban
,
V.
Veryazov
, and
R.
Lindh
, “
MOLCAS 7: The next generation
,”
J. Comput. Chem.
31
,
224
247
(
2010
).
58.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
59.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
60.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
61.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
62.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
63.
C. I.
Bayly
,
P.
Cieplak
,
W. D.
Cornell
, and
P. A.
Kollman
, “
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
,”
J. Phys. Chem.
97
,
10269
10280
(
1993
).
64.
H.
Li
and
J. H.
Jensen
, “
Partial Hessian vibrational analysis: The localization of the molecular vibrational energy and entropy
,”
Theor. Chem. Acc.
107
,
211
219
(
2002
).
65.
A.
Ghysels
,
V.
Van Speybroeck
,
E.
Pauwels
,
S.
Catak
,
B. R.
Brooks
,
D.
Van Neck
, and
M.
Waroquier
, “
Comparative study of various normal mode analysis techniques based on partial Hessians
,”
J. Comput. Chem.
31
,
994
1007
(
2010
).
66.
J. M. L.
Martin
,
J.
El-Yazal
, and
J.-P.
François
, “
Basis set convergence and performance of density functional theory including exact exchange contributions for geometries and harmonic frequencies
,”
Mol. Phys.
86
,
1437
1450
(
1995
).
67.
M.
Freindorf
,
Y.
Shao
,
T. R.
Furlani
, and
J.
Kong
, “
Lennard-Jones parameters for the combined QM/MM method using the B3LYP/6-31G*/AMBER potential
,”
J. Comput. Chem.
26
,
1270
1278
(
2005
).
68.
Dalton, A molecular electronic structure program, Release DALTON2013.0, 2013, http://daltonprogram.org/.
69.
E.
Cancès
,
B.
Mennucci
, and
J.
Tomasi
, “
A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics
,”
J. Chem. Phys.
107
,
3032
3041
(
1997
).
70.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3094
(
2005
).
71.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09 Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
72.
S. D.
Fried
,
L.-P.
Wang
,
S. G.
Boxer
,
P.
Ren
, and
V. S.
Pande
, “
Calculations of the electric fields in liquid solutions
,”
J. Phys. Chem. B
117
,
16236
16248
(
2013
).
73.
T.
Schwabe
,
J. M. H.
Olsen
,
K.
Sneskov
,
J.
Kongsted
, and
O.
Christiansen
, “
Solvation effects on electronic transitions: Exploring the performance of advanced solvent potentials in polarizable embedding calculations
,”
J. Chem. Theory Comput.
7
,
2209
2217
(
2011
).
74.
See supplementary material at http://dx.doi.org/10.1063/1.4905909 for correlation plots between experimental and computed C=O vibrational frequencies in different solvents.
75.
H.
Lee
,
J.-H.
Choi
, and
M.
Cho
, “
Vibrational solvatochromism and electrochromism of cyanide, thiocyanate, and azide anions in water
,”
Phys. Chem. Chem. Phys.
12
,
12658
12669
(
2010
).
76.
J.-H.
Choi
,
K.-I.
Oh
,
H.
Lee
,
C.
Lee
, and
M.
Cho
, “
Nitrile and thiocyanate IR probes: Quantum chemistry calculation studies and multivariate least-square fitting analysis
,”
J. Chem. Phys.
128
,
134506
(
2008
).
77.
E. S.
Park
and
S. G.
Boxer
, “
Origins of the sensitivity of molecular vibrations to electric fields: Carbonyl and nitrosyl stretches in model compounds and proteins
,”
J. Phys. Chem. B
106
,
5800
5806
(
2002
).
78.
I. T.
Suydam
and
S. G.
Boxer
, “
Vibrational Stark effects calibrate the sensitivity of vibrational probes for electric fields in proteins
,”
Biochemistry
42
,
12050
12055
(
2003
).

Supplementary Material

You do not currently have access to this content.